Page 150 - Lignocellulosic Biomass to Liquid Biofuels
P. 150
124 Lignocellulosic Biomass to Liquid Biofuels
[274] J.Q. Li, The chemistry and technology of furfural and its many by-products, Chem.
Eng. J. 81 (1 3) (2001) 338 339.
[275] J. Lecomte, A. Finiels, C. Moreau, A new selective route to 5-
hydroxymethylfurfural from furfural and furfural derivatives over microporous solid
acidic catalysts, Ind. Crops Prod. 9 (3) (1999) 235 241.
[276] R. Weingarten, J. Cho, W.C. Conner Jr., G.W. Huber, Kinetics of furfural pro-
duction by dehydration of xylose in a biphasic reactor with microwave heating,
Green Chem. 12 (8) (2010) 1423.
[277] P.T. Adeboye, M. Bettiga, L. Olsson, The chemical nature of phenolic compounds
determines their toxicity and induces distinct physiological responses in
Saccharomyces cerevisiae in lignocellulose hydrolysates, AMB Exp. 4 (1) (2014) 1 10.
[278] D. Lin, M. Xiao, J. Zhao, Z. Li, B. Xing, X. Li, et al., An overview of plant phe-
nolic compounds and their importance in human nutrition and management of
type 2 diabetes, Molecules 21 (10) (2016) 1374.
[279] N. Babbar, H.S. Oberoi, S.K. Sandhu, V.K. Bhargav, Influence of different solvents
in extraction of phenolic compounds from vegetable residues and their evaluation
as natural sources of antioxidants, J. Food Sci. Technol. 51 (10) (2014) 2568 2575.
[280] Y.C. Li, Z.X. Gou, Y. Zhang, Z.Y. Xia, Y.Q. Tang, K. Kida, Inhibitor tolerance
of a recombinant flocculating industrial Saccharomyces cerevisiae strain during glucose
and xylose co-fermentation, Braz. J. Microbiol. 48 (4) (2017) 791 800.
[281] S. Stagge, A. Cavka, L.J. Jönsson, Identification of benzoquinones in pretreated lig-
nocellulosic feedstocks and inhibitory effects on yeast, AMB Exp. 5 (1) (2015) 62.
[282] D. Chiaramonti, M. Prussi, S. Ferrero, L. Oriani, P. Ottonello, P. Torre, et al.,
Review of pretreatment processes for lignocellulosic ethanol production, and devel-
opment of an innovative method, Biomass Bioenergy 46 (2012) 25 35.
[283] A. Cavka, L.J. Jönsson, Detoxification of lignocellulosic hydrolysates using sodium
borohydride, Bioresour. Technol. 136 (2013) 368 376.
[284] A. Cavka, A. Wallenius, B. Alriksson, N.O. Nilvebrant, L.J. Jönsson, Ozone detox-
ification of steam-pretreated Norway spruce, Biotechnol. Biofuels 8 (1) (2015) 196.
[285] N.N. Nichols, B.S. Dien, G.M. Guisado, M.J. López, Bioabatement to remove
inhibitors from biomass-derived sugar hydrolysates, Appl. Biochem. Biotechnol.
121 124 (2005) 379 390.
[286] L. Favaro, M. Basaglia, A. Trento, E. Van Rensburg, M. García-Aparicio, W.H.
Van Zyl, et al., Exploring grape marc as trove for new thermotolerant and
inhibitor-tolerant Saccharomyces cerevisiae strains for second-generation bioethanol
production, Biotechnol. Biofuels 6 (1) (2013) 168.
[287] J. Smith, E. van Rensburg, J.F. Görgens, Simultaneously improving xylose fermen-
tation and tolerance to lignocellulosic inhibitors through evolutionary engineering
of recombinant Saccharomyces cerevisiae harbouring xylose isomerase, BMC
Biotechnol. 14 (2014) 41.
Further reading
C. Bro, B. Regenberg, J. Förster, J. Nielsen, In silico aided metabolic engineering of
Saccharomyces cerevisiae for improved bioethanol production, Metab. Eng. 8 (2006)
102 111.
H.H. Cheng, L.M. Whang, K.C. Chan, M.C. Chung, S.H. Wu, C.P. Liu, et al.,
Biological butanol production from microalgae-based biodiesel residues by Clostridium
acetobutylicum, Bioresour. Technol. 184 (2015) 379 385.