Page 147 - Lignocellulosic Biomass to Liquid Biofuels
P. 147
Bioconversion of lignocellulosic biomass to bioethanol and biobutanol 121
[221] Y. Tang, L. Zhu, W. Zhang, X. Shang, J. Jiang, Integrated process of starch ethanol
and cellulosic lactic acid for ethanol and lactic acid production, Appl. Microbiol.
Biotechnol. 97 (2013) 1923 1932.
[222] J. Choudhary, S. Singh, L. Nain, Thermotolerant fermenting yeasts for simulta-
neous saccharification fermentation of lignocellulosic biomass, Electron.
J. Biotechnol. 21 (2016) 82 92.
[223] K. Olofsson, A. Rudolf, G. Lidén, Designing simultaneous saccharification and fer-
mentation for improved xylose conversion by a recombinant strain of Saccharomyces
cerevisiae, J. Biotechnol. 134 (1 2) (2008) 112 120.
[224] Ó.J. Sánchez, C.A. Cardona, Trends in biotechnological production of fuel ethanol
from different feedstocks, Bioresour. Technol. 99 (2008) 5270 5295.
[225] P.M. Bondesson, M. Galbe, Process design of SSCF for ethanol production from
steam-pretreated, acetic-acid-impregnated wheat straw, Biotechnol. Biofuels 9 (1)
(2016).
[226] J.O. Westman, R. Wang, V. Novy, C.J. Franzén, Sustaining fermentation in high-
gravity ethanol production by feeding yeast to a temperature-profiled multifeed
simultaneous saccharification and co-fermentation of wheat straw, Biotechnol.
Biofuels 10 (1) (2017).
[227] C.R. Carere, R. Sparling, N. Cicek, D.B. Levin, Third generation biofuels via
direct cellulose fermentation, Int. J. Mol. Sci. 9 (7) (2008) 1342 1360.
[228] M.Á.B. Alcántara, J. Dobruchowska, P. Azadi, B.D. García, F.P. Molina-Heredia,
F.M. Reyes-Sosa, Recalcitrant carbohydrates after enzymatic hydrolysis of pre-
treated lignocellulosic biomass, Biotechnol. Biofuels 9 (1) (2016) 207.
[229] A.V. Suko, R. Bura, Enhanced xylitol and ethanol yields by fermentation inhibitors
in steam-pretreated lignocellulosic biomass, Ind. Biotechnol. 12 (3) (2016)
187 194.
[230] E.C. van der Pol, R.R. Bakker, P. Baets, G. Eggink, By-products resulting
from lignocellulose pretreatment and their inhibitory effect on fermentations
for (bio)chemicals and fuels, Appl. Microbiol. Biotechnol. 98 (2014)
9579 9593.
[231] A.M. Socha, R. Parthasarathi, J. Shi, S. Pattathil, D. Whyte, M. Bergeron, et al.,
Efficient biomass pretreatment using ionic liquids derived from lignin and hemicel-
lulose, Proc. Natl. Acad. Sci. U.S.A. 111 (35) (2014) E3587 E3595.
[232] C. Carrasco, H.M. Baudel, J. Sendelius, T. Modig, C. Roslander, M. Galbe, et al.,
SO 2 -catalyzed steam pretreatment and fermentation of enzymatically hydrolyzed
sugarcane bagasse, Enzyme Microb. Technol. 46 (2010) 64 73.
[233] A. Verardi, A. Blasi, A. Molino, L. Albo, V. Calabrò, Improving the enzymatic
hydrolysis of Saccharum officinarum L. bagasse by optimizing mixing in a stirred tank
reactor: quantitative analysis of biomass conversion, Fuel Process. Technol. 149
(2016) 15 22.
[234] L.J. Jönsson, C. Martín, Pretreatment of lignocellulose: formation of inhibitory by-
products and strategies for minimizing their effects, Bioresour. Technol. 199 (2016)
103 112.
[235] A.T. Smit, J.W. Van Hal, L. Lanting, K.J. Damen, Effective fractionation of ligno-
cellulose using a mild acetone-based organosolv process, Green Chem. 19 (2017)
5505 5514.
[236] F. Monlau, C. Sambusiti, A. Barakat, M. Quéméneur, E. Trably, J. Steyer, et al.,
Do furanic and phenolic compounds of lignocellulosic and algae biomass hydroly-
zate inhibit anaerobic mixed cultures? A comprehensive review, Biotechnol. Adv.
32 (5) (2014) 934 951.
[237] D. Kim, Physico-chemical conversion of lignocellulose: inhibitor effects and detoxi-
fication strategies: a mini review, Molecules 23 (2) (2018) 309.