Page 143 - Lignocellulosic Biomass to Liquid Biofuels
P. 143
Bioconversion of lignocellulosic biomass to bioethanol and biobutanol 117
[147] P.P. Lin, K.S. Rabe, J.L. Takasumi, M. Kadisch, F.H. Arnold, J.C. Liao, Isobutanol pro-
duction at elevated temperatures in thermophilic Geobacillus thermoglucosidasius,Metab.
Eng. 24 (2014) 1 8.
[148] M.W. Keller, G.L. Lipscomb, A.J. Loder, G.J. Schut, R.M. Kelly, M.W.W. Adams,
A hybrid synthetic pathway for butanol production by a hyperthermophilic
microbe, Metab. Eng. 27 (2015) 101 106.
[149] J. Liu, T. Guo, D. Wang, J. Xu, H. Ying, Butanol production by a Clostridium bei-
jerinckii mutant with high ferulic acid tolerance, Biotechnol. Appl. Biochem. 63
(2016) 727 733.
[150] C. Lu, L. Yu, S. Varghese, M. Yu, S.T. Yang, Enhanced robustness in aceto-
ne butanol ethanol fermentation with engineered Clostridium beijerinckii overex-
pressing adhE2 and ctfAB, Bioresour. Technol. 243 (2017) 1000 1008.
[151] Y. Yan, J. He, Clostridium species strain BOH 3 tolerates and transforms inhibitors from
horticulture waste hydrolysates, Appl. Microbiol. Biotechnol. 101 (2017) 6289 6297.
[152] L. Yu, M. Xu, I.-C. Tang, S.-T. Yang, Metabolic engineering of Clostridium tyrobu-
tyricum for n-butanol production through co-utilization of glucose and xylose,
Biotechnol. Bioeng. 112 (2015) 2134 2141.
[153] S. Atsumi, J.C. Liao, Metabolic engineering for advanced biofuels production from
Escherichia coli, Curr. Opin. Biotechnol. 19 (2008) 414 419.
[154] S. Atsumi, A.F. Cann, M.R. Connor, C.R. Shen, K.M. Smith, M.P. Brynildsen,
et al., Metabolic engineering of Escherichia coli for 1-butanol production, Metab. Eng.
10 (2008) 305 311.
[155] C.R. Shen, J.C. Liao, Metabolic engineering of Escherichia coli for 1-butanol and 1-
propanol production via the keto-acid pathways, Metab. Eng. 10 (2008) 312 320.
[156] D.R. Nielsen, E. Leonard, S.H. Yoon, H.C. Tseng, C. Yuan, K.L.J. Prather,
Engineering alternative butanol production platforms in heterologous bacteria,
Metab. Eng. 11 (2009) 262 273.
[157] C.R. Shen,E.I. Lan,Y. Dekishima,A. Baez, K.M. Cho, J.C. Liao, Driving forces enable
high-titer anaerobic 1-butanol synthesis in Escherichia coli, Appl. Environ. Microbiol. 77
(2011) 2905 2915.
[158] Q. Wang, Y. Ding, L. Liu, J. Shi, J. Sun, Y. Xue, Engineering Escherichia coli for
autoinducible production of n-butanol, Electron. J. Biotechnol. 25113 (2015) 1 5.
[159] M. Saini, L.J. Lin, C.J. Chiang, Y.P. Chao, Synthetic consortium of Escherichia coli
for n-butanol production by fermentation of the glucose xylose mixture, J. Agric.
Food. Chem. 65 (2017) 10040 10047.
[160] E.J. Steen, R. Chan, N. Prasad, S. Myers, C.J. Petzold, A. Redding, et al.,
Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol,
Microb. Cell Fact. 7 (2008) 36 43.
[161] Z. Dai, Y. Liu, X. Zhang, M. Shi, B. Wang, D. Wang, et al., Metabolic engineer-
ing of Saccharomyces cerevisiae for production of ginsenosides, Metab. Eng. 20 (2013)
146 156.
[162] H. Li, P.H. Opgenorth, D.G. Wernick, S. Rogers, T.-Y. Wu, W. Higashide, et al.,
Integrated electromicrobial conversion of CO 2 to higher alcohols, Science (80-.)
335 (2012) 1596.
[163] S. Liu, K.M. Bischoff, N. Qureshi, S.R. Hughes, J.O. Rich, Functional expression
of the thiolase gene thl from Clostridium beijerinskii p260 in Lactococcus lactis and
Lactobacillus buchneri, N. Biotechnol. 27 (2010) 283 284.
[164] Y. Jiang, D. Guo, J. Lu, P. Dürre, W. Dong, W. Yan, et al., Consolidated biopro-
cessing of butanol production from xylan by a thermophilic and butanologenic
Thermoanaerobacterium sp. M5, Biotechnol. Biofuels 11 (2018) 89.
[165] S.H. Lee, E.J. Yun, J. Kim, S.J. Lee, Y. Um, K.H. Kim, Biomass, strain engineer-
ing, and fermentation processes for butanol production by solventogenic clostridia,
Appl. Microbiol. Biotechnol. 100 (2016) 8255 8271.