Page 146 - Lignocellulosic Biomass to Liquid Biofuels
P. 146
120 Lignocellulosic Biomass to Liquid Biofuels
[201] M. Vohra, J. Manwar, R. Manmode, S. Padgilwar, S. Patil, Bioethanol production:
feedstock and current technologies, J. Environ. Chem. Eng. 2 (1) (2014) 573 584.
[202] S. Xiu, B. Zhang, A. Shahbazi, Biorefinery processes for biomass conversion to liq-
uid fuel, Biofuel’s Eng. Proces Technol. (2010) 167 190.
[203] H.S. Hafid, N.A.A. Rahman, U.K.M. Shah, A.S. Baharuddin, A.B. Ariff, Feasibility
of using kitchen waste as future substrate for bioethanol production: a review,
Renew. Sustain. Energy Rev. 74 (2017) 671 686.
[204] A. Demirba¸s, Bioethanol from cellulosic materials: a renewable motor fuel from
biomass, Energy Sources 27 (4) (2005) 327 337.
[205] M.J. Taherzadeh, K. Karimi, Enzyme-based hydrolysis processes for ethanol from
lignocellulosic materials: a review, Bioresources 2 (4) (2007) 707 738.
[206] V. Balan, Current challenges in commercially producing biofuels from lignocellu-
losic biomass, ISRN Biotechnol. 2014 (2014) 1 31. Article ID 463074.
[207] M. Yang, H. Ji, J.Y. Zhu, Batch fermentation options for high titer bioethanol pro-
duction from a SPORL pretreated Douglas-fir forest residue without detoxification,
Fermentation 2 (3) (2016) 10.
[208] S. Macrelli, J. Mogensen, G. Zacchi, Techno-economic evaluation of 2nd genera-
tion bioethanol production from sugar cane bagasse and leaves integrated with the
sugar-based ethanol process, Biotechnol. Biofuels 5 (22) (2012) 2 18.
[209] T.D. Foust, A. Aden, A. Dutta, S. Phillips, An economic and environmental com-
parison of a biochemical and a thermochemical lignocellulosic ethanol conversion
processes, Cellulose 16 (4) (2009) 547 565.
[210] W. Gauss, S. Suzuki, M. Takagi, Manufacture of Alcohol From Cellulosic Materials
Using Plural Ferments, US Pat. 3,990,944, 39909, No. Issue 610731, 1976.
[211] K. Olofsson, M. Bertilsson, G. Lidén, A short review on SSF an interesting pro-
cess option for ethanol production from lignocellulosic feedstocks, Biotechnol.
Biofuels 1 (7) (2008) 1 14.
[212] S.H. Mohd Azhar, R. Abdulla, S.A. Jambo, H. Marbawi, J.A. Gansau, A.A. Mohd
Faik, et al., Yeasts in sustainable bioethanol production: a review, Biochem.
Biophys. Rep. 10 (2017) 52 61.
[213] D.D. Spindler, C.E. Wyman, K. Grohmann, G.P. Philippidis, Evaluation of the
cellobiose-fermenting yeast Brettanomyces custersii in the simultaneous saccharification
and fermentation of cellulose, Biotechnol. Lett. 14 (5) (1992) 403 407.
[214] S. Zhou, L.O. Ingram, Simultaneous saccharification and fermentation of amor-
phous cellulose to ethanol by recombinant Klebsiella oxytoca SZ21 without supple-
mental cellulase, Biotechnol. Lett. 23 (18) (2001) 1455 1462.
[215] C. Tengborg, M. Galbe, G. Zacchi, Reduced inhibition of enzymatic hydrolysis of
steam-pretreated softwood, Enzyme Microb. Technol. 28 (9 10) (2001) 835 844.
[216] P. Sassner, M. Galbe, G. Zacchi, Techno-economic evaluation of bioethanol pro-
duction from three different lignocellulosic materials, Biomass Bioenergy 32 (5)
(2008) 422 430.
[217] C.E. Wyman, Handbook on Bioethanol: Production and Utilization, in: Charles
Wyman (Ed.), Taylor and Francis group, vol. 51, 1996.
[218] C. Ricardo Soccol, V. Faraco, S. Karp, L.P.S. Vandenberghe, V. Thomaz-Soccol,
A. Woiciechowski, et al., Lignocellulosic Bioethanol: Current Status and Future
Perspectives, first ed, Elsevier Inc, 2011.
[219] M.P. García-Aparicio, I. Ballesteros, A. González, et al., Effect of inhibitors released
during steam-explosion pretreatment of barley straw on enzymatic hydrolysis, Apll.
Biochem. Biotechnol. 129 (2006) 278 288.
[220] A. Verardi, I. De Bari, E. Ricca, V. Calabrò, Hydrolysis of lignocellulosic biomass:
current status of processes and technologies and future perspectives, in: A.P.P.
Natalense (Ed.), Bioethanol, InTech, 2012.