Page 137 - Lignocellulosic Biomass to Liquid Biofuels
P. 137
Bioconversion of lignocellulosic biomass to bioethanol and biobutanol 111
Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydroge-
nase II, Appl. Environ. Microbiol. 57 (1991) 893 900.
[49] M. Zhang, C. Eddy, K. Deanda, M. Finkelstein, S. Picataggio, Metabolic engineering
of a pentose metabolism pathway in ethanologenic Zymomonas mobilis, Science (80-.)
267 (1995) 240 243.
[50] B.C. Saha, N.N. Nichols, M.A. Cotta, Ethanol production from wheat straw
by recombinant Escherichia coli strain FBR5 at high solid loading, Bioresour. Technol.
102 (2011) 10892 10897.
[51] T. Jojima, R. Noburyu, M. Sasaki, T. Tajima, M. Suda, H. Yukawa, et al.,
Metabolic engineering for improved production of ethanol by Corynebacterium gluta-
micum, Appl. Microbiol. Biotechnol. 99 (2014) 1165 1172.
[52] B. Hahn-Hägerdal, K. Karhumaa, C. Fonseca, I. Spencer-Martins, M.F. Gorwa-
Grauslund, Towards industrial pentose-fermenting yeast strains, Appl. Microbiol.
Biotechnol. 74 (2007) 937 953.
[53] L. Viikari, M. Alapuranen, T. Puranen, J. Vehmaanperä, M. Siika-Aho, Biofuels,
2007.
[54] L. de Figueiredo Vilela, V.P.G. de Araujo, R. de, S. Paredes, E.P. da, S. Bon, et al.,
Enhanced xylose fermentation and ethanol production by engineered Saccharomyces
cerevisiae strain, AMB Express 5 (2015) 1 7.
[55] M.M. Demeke, F. Dumortier, Y. Li, T. Broeckx, M.R. Foulquié-Moreno, J.M.
Thevelein, Combining inhibitor tolerance and D-xylose fermentation in industrial
Saccharomyces cerevisiae for efficient lignocellulose-based bioethanol production,
Biotechnol. Biofuels. 6 (2013) 1 17.
[56] M.M. Demeke, H. Dietz, Y. Li, M.R. Foulquié-Moreno, S. Mutturi, S. Deprez,
et al., Development of a D-xylose fermenting and inhibitor tolerant industrial
Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates
using metabolic and evolutionary engineering, Biotechnol. Biofuels 6 (2013) 1 24.
[57] A. Eliasson, C. Christensson, C.F. Wahlbom, B. Hahn-Hägerdal, Anaerobic xylose fer-
mentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in
mineral medium chemostat cultures, Appl. Environ. Microbiol. 66 (2000) 3381 3386.
[58] N.W.Y. Ho, Z. Chen, A.P. Brainard, Genetically engineered saccharomyces yeast
capable of effective cofermentation of glucose and xylose, Appl. Environ. Microbiol.
64 (1998) 1852 1859. Available from: http://aem.asm.org/content/64/5/1852%
5Cnhttp://aem.asm.org/content/64/5/1852.full.pdf%5Cnhttp://aem.asm.org/con-
tent/64/5/1852.short.
[59] S. Katahira, A. Mizuike, H. Fukuda, A. Kondo, Ethanol fermentation from lignocel-
lulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating
yeast strain, Appl. Microbiol. Biotechnol. 72 (2006) 1136 1143.
[60] S.R. Kim, Y.-C. Park, Y.-S. Jin, J.-H. Seo, Strain engineering of Saccharomyces cerevi-
siae for enhanced xylose metabolism, Biotechnol. Adv. 31 (2013) 851 861.
[61] J.K. Ko, Y. Um, H.M. Woo, K.H. Kim, S.-M. Lee, Ethanol production from ligno-
cellulosic hydrolysates using engineered Saccharomyces cerevisiae harboring xylose
isomerase-based pathway, Bioresour. Technol. 209 (2016) 290 296.
[62] P. Kötter, M. Ciriacy, Xylose fermentation by Saccharomyces cerevisiae, Appl.
Microbiol. Biotechnol. 38 (1993) 776 783.
[63] A. Matsushika, H. Inoue, K. Murakami, O. Takimura, S. Sawayama, Bioethanol
production performance of five recombinant strains of laboratory and industrial
xylose-fermenting Saccharomyces cerevisiae, Bioresour. Technol. 100 (2009)
2392 2398.
[64] A. Matsushika, H. Inoue, S. Watanabe, T. Kodaki, K. Makino, S. Sawayama,
Efficient bioethanol production by a recombinant flocculent Saccharomyces cerevisiae