Page 135 - Lignocellulosic Biomass to Liquid Biofuels
P. 135
Bioconversion of lignocellulosic biomass to bioethanol and biobutanol 109
[15] N.L. Mai, K. Ahn, Y.-M. Koo, Methods for recovery of ionic liquids—a review,
Process Biochem. 49 (2014) 872 881.
[16] T.-Q. Yuan, T.-T. You, W. Wang, F. Xu, R.-C. Sun, Synergistic benefits of ionic
liquid and alkaline pretreatments of poplar wood. Part 2: Characterization of lignin
and hemicelluloses, Bioresour. Technol. 136 (2013) 345 350.
[17] N. Sun, M. Rahman, Y. Qin, M.L. Maxim, H. Rodriguez, R.D. Rogers, Complete
dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-
methylimidazolium acetate, Green. Chem. 11 (2009) 646 655.
[18] L. Moghaddam, Z. Zhang, R.M. Wellard,J.P.Bartley, I.M.O’Hara, W.O.S.
Doherty, Characterisation of lignins isolated from sugarcane bagasse pretreated
with acidified ethylene glycol and ionic liquids, Biomass-Bioenergy 70 (2014)
498 512.
[19] A. Pinkert, D.F. Goeke, K.N. Marsh, S. Pang, Extracting wood lignin without dis-
solving or degrading cellulose: investigations on the use of food additive-derived
ionic liquids, Green. Chem. 13 (2011) 3124 3136.
[20] N. Srivastava, R. Rawat, H. Singh Oberoi, P.W. Ramteke, A review on fuel etha-
nol production from lignocellulosic biomass, Int. J. Green Energy 12 (2015)
949 960.
[21] D. Moreno, D. Ibarra, P. Alvira, E. Tomás-Pejó, M. Ballesteros, A review of biolog-
ical delignification and detoxification methods for lignocellulosic bioethanol produc-
tion, Crit. Rev. Biotechnol. 35 (2015) 342 354.
[22] A.K. Chandel, C. Es, R. Rudravaram, M.L. Narasu, L.V. Rao, P. Ravindra,
Economics and environmental impact of bioethanol production technologies: an
appraisal, Biotechnol. Mol. Biol. Rev. 2 (2007) 14 32.
[23] R. Yamada, N. Taniguchi, T. Tanaka, C. Ogino, H. Fukuda, A. Kondo, Direct eth-
anol production from cellulosic materials using a diploid strain of Saccharomyces cerevi-
siae with optimized cellulase expression, Biotechnol. Biofuels 4 (2011) 1 8.
[24] T. Treebupachatsakul, K. Shioya, H. Nakazawa, T. Kawaguchi, Y. Morikawa, Y.
Shida, et al., Utilization of recombinant Trichoderma reesei expressing Aspergillus aculea-
tus β-glucosidase I (JN11) for a more economical production of ethanol from ligno-
cellulosic biomass, J. Biosci. Bioeng. 120 (2015) 657 665.
[25] B.G. Schuster, M.S. Chinn, Consolidated bioprocessing of lignocellulosic feedstocks
for ethanol fuel production, Bioenergy Res. 6 (2013) 416 435.
[26] R.R. Singhania, A.K. Patel, R.K. Sukumaran, C. Larroche, A. Pandey, Role and
significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol produc-
tion, Bioresour. Technol. 127 (2013) 500 507.
[27] T. Hasunuma, F. Okazaki, N. Okai, K.Y. Hara, J. Ishii, A. Kondo, A review of
enzymes and microbes for lignocellulosic biorefinery and the possibility of their
application to consolidated bioprocessing technology, Bioresour. Technol. 135
(2013) 513 522.
[28] M.G. Tabka, I. Herpoël-Gimbert, F. Monod, M. Asther, J.C. Sigoillot, Enzymatic
saccharification of wheat straw for bioethanol production by a combined cellulase
xylanase and feruloyl esterase treatment, Enzyme Microb. Technol. 39 (2006)
897 902.
[29] R. Arora, S. Behera, S. Kumar, Bioprospecting thermophilic/thermotolerant
microbes for production of lignocellulosic ethanol: a future perspective, Renew.
Sustain. Energy Rev. 51 (2015) 699 717.
[30] J.K. Saini, R. Saini, L. Tewari, Lignocellulosic agriculture wastes as biomass feed-
stocks for second-generation bioethanol production: concepts and recent develop-
ments, 3 Biotech. 5 (2015) 337 353.
[31] A. Bhalla, N. Bansal, S. Kumar, K.M. Bischoff, R.K. Sani, Improved lignocellulose
conversion to biofuels with thermophilic bacteria and thermostable enzymes,
Bioresour. Technol. 128 (2013) 751 759.