Page 136 - Lignocellulosic Biomass to Liquid Biofuels
P. 136
110 Lignocellulosic Biomass to Liquid Biofuels
[32] Y. Lin, S. Tanaka, Ethanol fermentation from biomass resources: current state and
prospects, Appl. Microbiol. Biotechnol. 69 (2006) 627 642.
[33] A. Limayem, S.C. Ricke, Lignocellulosic biomass for bioethanol production: current
perspectives, potential issues and future prospects, Prog. Energy Combust. Sci. 38
(2012) 449 467.
[34] F.B. Pereira, A. Romaní, H.A. Ruiz, J.A. Teixeira, L. Domingues, Industrial robust
yeast isolates with great potential for fermentation of lignocellulosic biomass,
Bioresour. Technol. 161 (2014) 192 199.
[35] R. Lamed, J.G. Zeikus, Ethanol production by thermophilic bacteria: relationship
between fermentation product yields of and catabolic enzyme activities in Clostridium
thermocellum and Thermoanaerobium brockii, J. Bacteriol. 144 (1980) 569 578. http://
www.pubmedcentral.nih.gov/articlerender.fcgi?artid 5 294704&tool 5 pmcentrez&
rendertype 5 abstract%5Cn%3CGo to ISI%3E://WOS:A1980KQ60500011.
[36] M.P. Taylor, K.L. Eley, S. Martin, M.I. Tuffin, S.G. Burton, D.A. Cowan,
Thermophilic ethanologenesis: future prospects for second-generation bioethanol
production, Trends Biotechnol. 27 (2009) 398 405.
[37] D.G. Olson, R. Sparling, L.R. Lynd, Ethanol production by engineered thermo-
philes, Curr. Opin. Biotechnol. 33 (2015) 130 141.
[38] E.A. Da Silva Filho, H.F. De Melo, D.F. Antunes, S.K.B. Dos Santos, A. Do Monte
Resende, D.A. Simões, et al., Isolation by genetic and physiological characteristics of
a fuel-ethanol fermentative Saccharomyces cerevisiae strain with potential for genetic
manipulation, J. Ind. Microbiol. Biotechnol. 32 (2005) 481 486.
[39] A.J. Mattam, A. Kuila, N. Suralikerimath, N. Choudary, P.V.C. Rao, H.R.
Velankar, Cellulolytic enzyme expression and simultaneous conversion of lignocel-
lulosic sugars into ethanol and xylitol by a new Candida tropicalis strain, Biotechnol.
Biofuels 9 (2016) 1 12.
[40] C. Laluce, A.C.G. Schenberg, J.C.M. Gallardo, L.F.C. Coradello, S.R. Pombeiro-
Sponchiado, Advances and developments in strategies to improve strains of
Saccharomyces cerevisiae and processes to obtain the lignocellulosic ethanol—a review,
Appl. Biochem. Biotechnol. 166 (2012) 1908 1926.
[41] J. Zaldivar, J. Nielsen, L. Olsson, Fuel ethanol production from lignocellulose: a
challenge for metabolic engineering and process integration, Appl. Microbiol.
Biotechnol. 56 (2001) 17 34.
[42] A. Aristidou, M. Penttilä, Metabolic engineering applications to renewable resource
utilization, Curr. Opin. Biotechnol. 11 (2000) 187 198.
[43] A. Matsushika, H. Inoue, T. Kodaki, S. Sawayama, Ethanol production from xylose
in engineered Saccharomyces cerevisiae strains: current state and perspectives, Appl.
Microbiol. Biotechnol. 84 (2009) 37 53.
[44] K. Deanda, M. Zhang, C. Eddy, S. Picataggio, Development of an arabinose-
fermenting Zymomonas mobilis strain by metabolic pathway engineering,
Microbiology 62 (1996) 4465 4470.
[45] B.S. Dien, M.A. Cotta, T.W. Jeffries, Bacteria engineered for fuel ethanol produc-
tion: current status, Appl. Microbiol. Biotechnol. 63 (2003) 258 266.
[46] L.O. Ingram, T. Conway, D.P. Clark, G.W. Sewell, J.F. Preston, Genetic engineer-
ing of ethanol production in Escherichia coli, Appl. Environ. Microbiol. 53 (1987)
2420 2425.
[47] L.O. Ingram, P.F. Gomez, X. Lai, M. Moniruzzaman, B.E. Wood, L.P. Yomano,
et al., Metabolic engineering of bacteria for ethanol production, Biotechnol. Bioeng.
58 (1998) 204 214.
[48] K. Ohta, D.S. Beall, J.P. Mejia, K.T. Shanmugam, L.O. Ingram, Genetic improve-
ment of Escherichia coli for ethanol production: chromosomal integration of