Page 122 - MEMS and Microstructures in Aerospace Applications
P. 122
Osiander / MEMS and microstructures in Aerospace applications DK3181_c006 Final Proof page 111 2.9.2005 9:38am
6 Microtechnologies for
Space Systems
Thomas George and Robert Powers
CONTENTS
6.1 Introduction to Space Technology Development ....................................... 111
6.2 High TRL Success Stories........................................................................... 113
6.2.1 ‘‘Spider Web’’ Bolometers for Herschel Space Observatory
and PLANCK Surveyor Missions.................................................. 113
6.2.2 MEMS-Based Sun Sensor.............................................................. 114
6.2.3 MEMS Vibratory Gyroscope ......................................................... 114
6.2.4 MEMS Microshutter Arrays for the James Webb
Space Telescope ............................................................................. 116
6.2.5 Carbon Nanotube-Based Thermal Interface .................................. 116
6.2.6 RF MEMS Switch .......................................................................... 117
6.2.7 Microchemical Sensors .................................................................. 118
6.2.8 MEMS Variable Emittance Control Instrument ............................ 119
6.2.9 Tunneling Infrared Sensor on the SAPPHIRE Satellite................ 120
6.2.10 Free Molecule Micro-Resistojet..................................................... 120
6.3 Technology Development Pipeline ............................................................. 122
6.3.1 Technology Maturation Team Approach......................................... 122
6.3.2 Low-Cost, Rapid Space Flight......................................................... 123
6.4 Conclusion ................................................................................................... 125
References............................................................................................................. 125
6.1 INTRODUCTION TO SPACE TECHNOLOGY DEVELOPMENT
The ‘‘maturing’’ of advanced micronanotechnology (MNT) concepts for space
applications faces a very similar dilemma similar to that faced in the commercial
world. 1,2,3 NASA has pioneered a means of evaluating the maturity of new tech-
nologies, known as the technology readiness level (TRL) scale that has now found
widespread use in government and industry. As shown in Table 6.1, the TRL scale
ranges from levels 1 through 9, with levels 1 to 3 being at the so-called ‘‘low-TRL,’’
that is basic research into demonstrating the proof-of-concept. Levels 4 to 6
correspond to ‘‘mid-TRL’’ development, which is the reliable demonstration of
subsystems based on the new technologies, and finally, levels 7 to 9 (high-TRL)
correspond to successful utilization of these technologies at the system or subsys-
tem level in NASA’s space missions. A large majority of the exciting MNT
111
© 2006 by Taylor & Francis Group, LLC