Page 122 - MEMS and Microstructures in Aerospace Applications
P. 122

Osiander / MEMS and microstructures in Aerospace applications DK3181_c006 Final Proof page 111 2.9.2005 9:38am








                         6       Microtechnologies for

                                 Space Systems




                                Thomas George and Robert Powers



                    CONTENTS

                    6.1  Introduction to Space Technology Development ....................................... 111
                    6.2  High TRL Success Stories........................................................................... 113
                        6.2.1  ‘‘Spider Web’’ Bolometers for Herschel Space Observatory
                               and PLANCK Surveyor Missions.................................................. 113
                        6.2.2  MEMS-Based Sun Sensor.............................................................. 114
                        6.2.3  MEMS Vibratory Gyroscope ......................................................... 114
                        6.2.4  MEMS Microshutter Arrays for the James Webb
                               Space Telescope ............................................................................. 116
                        6.2.5  Carbon Nanotube-Based Thermal Interface .................................. 116
                        6.2.6  RF MEMS Switch .......................................................................... 117
                        6.2.7  Microchemical Sensors .................................................................. 118
                        6.2.8  MEMS Variable Emittance Control Instrument ............................ 119
                        6.2.9  Tunneling Infrared Sensor on the SAPPHIRE Satellite................ 120
                        6.2.10 Free Molecule Micro-Resistojet..................................................... 120
                    6.3  Technology Development Pipeline ............................................................. 122
                        6.3.1 Technology Maturation Team Approach......................................... 122
                        6.3.2 Low-Cost, Rapid Space Flight......................................................... 123
                    6.4  Conclusion ................................................................................................... 125
                    References............................................................................................................. 125


                    6.1 INTRODUCTION TO SPACE TECHNOLOGY DEVELOPMENT
                    The ‘‘maturing’’ of advanced micronanotechnology (MNT) concepts for space
                    applications faces a very similar dilemma similar to that faced in the commercial
                    world. 1,2,3  NASA has pioneered a means of evaluating the maturity of new tech-
                    nologies, known as the technology readiness level (TRL) scale that has now found
                    widespread use in government and industry. As shown in Table 6.1, the TRL scale
                    ranges from levels 1 through 9, with levels 1 to 3 being at the so-called ‘‘low-TRL,’’
                    that is basic research into demonstrating the proof-of-concept. Levels 4 to 6
                    correspond to ‘‘mid-TRL’’ development, which is the reliable demonstration of
                    subsystems based on the new technologies, and finally, levels 7 to 9 (high-TRL)
                    correspond to successful utilization of these technologies at the system or subsys-
                    tem level in NASA’s space missions. A large majority of the exciting MNT

                                                                                    111

                    © 2006 by Taylor & Francis Group, LLC
   117   118   119   120   121   122   123   124   125   126   127