Page 151 - Macromolecular Crystallography
P. 151
140 MACROMOLECULAR CRYS TALLOGRAPHY
Bruker AXS (2005). XPREP, Version 2005/1. Bruker AXS Hendrickson, W. A. (1991). Determination of macro-
Inc., Madison, Wisconsin, USA. molecular structures from anomalous diffraction of syn-
Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., chrotron radiation. Science 254, 51–58.
Giacovazzo, C., Polidori, G. and Spagna, R. (2000). Howell, P. L., Blessing, R. H., Smith, G. D. and Weeks,
SIR2000, a program for the automatic ab initio crystal C. M. (2000). Optimizing DREAR and SnB parameters
structure solution of proteins. Acta Crystallogr. A 56, for determining Se-atom substructures. Acta Crystallogr.
451–457. D 56, 604–617.
Burla, M. C., Carrozzini, B., Cascarano, G. L., De Caro, Jones, T. A., Zou, J. Y., Cowtan, S. W. and Kjeldgaard, M.
L., Giacovazzo, C. and Polidori, G. (2003). Ab initio pro- (1991). Improved methods for building protein models
tein phasing at 1.4Å resolution. Acta Crystallogr. A 59, in electron density maps and the location of errors in
245–249. these models. Acta Crystallogr. A 47, 110–119.
Chowdhury, K., Bhattacharya, S.andMukherjee, M.(2005). Karle, J. (1989). Linear algebraic analyses of structures
Ab initio structure solution of nucleic acids and pro- with one predominant type of anomalous scatterer. Acta
teins by direct methods: reciprocal-space and real-space Crystallogr. A 45, 303–307.
approach. J. Appl. Cryst. 38, 217–222. Karle, J. and Hauptman, H. (1956). A theory of phase
Cochran, W. (1955). Relations between the phases of determination for the four types of non-centrosymmetric
structure factors. Acta Crystallogr. 8, 473–478. space groups 1P222, 2P22, 3P 1 2, 3P 2 2. Acta Crystallogr.
Debaerdemaeker, T. and Woolfson, M. M. (1983). On the 9, 635–651.
application of phase relationships to complex structures. Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G.,
XXII. Techniques for random phase refinement. Acta Declercq, J. P. and Woolfson, M.M. (1980). MULTAN80: a
Crystallogr. A 39, 193–196. System of Computer Programs for the Automatic Solution of
DeTitta, G. T., Weeks, C. M., Thuman, P., Miller, R. Crystal Structures from X-ray Diffraction Data. Universities
and Hauptman, H. A. (1994). Structure solution by of York and Louvain.
minimal-functionphaserefinementandFourierfiltering. McCarthy, A. A., Baker, H. M., Shewry, S. C., Patchett,
I. Theoretical basis. Acta Crystallogr. A 50, 203–210. M. L. and Baker, E. N. (2001). Crystal structure of
Foadi, J., Woolfson, M. M., Dodson, E. J., Wilson, K. S., Yao, methylmalonyl-coenzyme A epimerase from P. sher-
J.-X. and Zheng, C.-D. (2000). Aflexible and efficient pro- manii: a novel enzymatic function on an ancient metal
cedure for the solution and phase refinement of protein binding scaffold. Structure 9, 637–646.
structures. Acta Crystallogr. D 56, 1137–1147. Miller, R., DeTitta, G. T., Jones, R., Langs, D. A., Weeks,
Frazão, C., Sieker, L., Sheldrick, G.M., Lamzin, V., LeGall,J. C. M., and Hauptman, H. A. (1993). On the application
and Carrondo, M. A. (1999). Ab initio structure sol- of the minimal principle to solve unknown structures.
ution of a dimeric cytochrome c3 from Desulfovibrio gigas Science 259, 1430–1433.
containing disulfide bridges. J. Biol. Inorg. Chem. 4, Miller, R., Gallo, S. M., Khalak, H. G., and Weeks, C. M.
162–165. (1994). SnB: crystal structure determination via Shake-
Fujinaga, M. and Read, R. J. (1987). Experiences with a new and-Bake. J. Appl. Cryst. 27, 613–621.
translation-function program. J. Appl. Cryst. 20, 517–521. Morris, R. J., Perrakis, A., and Lamzin, V. S.
Furey, W. and Swaminathan, S. (1997). PHASES-95: a (2003). ARP/wARP and automatic interpretation of
program package for processing and analyzing diffrac- protein electron density maps. Method Enzymol. 374,
tion data from macromolecules. Method Enzymol. 277, 229–244.
590–620. Rajakannan, V., Selvanayagam, S., Yamane, T., Shirai, T.,
Germain, G. and Woolfson, M. M. (1968). On the applica- Kobayashi, T., Ito, S. and Velmurugan, D. (2004a). The
tion of phase relationships to complex structures. Acta use of ACORN in solving a 39.5 kDa macromolecule with
Crystallogr. B 24, 91–96. 1.9Å resolution laboratory source data. J. Synch. Rad. 11,
Grosse-Kunstleve, R. W. andAdams, P. D. (2003). Substruc- 358–362.
ture search procedures for macromolecular structures. Rajakannan, V., Yamane, T., Shirai, T., Kobayashi, T.,
Acta Crystallogr. D 59, 1966–1973. Ito, S., and Velmurugan, D. (2004b). Applications of
Hauptman, H. A. (1974). On the theory and estimation ACORN to data at 1.45Å resolution. J. Synch. Rad. 11,
of the cosine invariants cos(ϕ l + ϕ m + ϕ n + ϕ p ). Acta 64–67.
Crystallogr. A 30, 822–829. Schenk, H. (1974). On the use of negative quartets. Acta
Hauptman, H. A. and Karle, J. (1953). Solution of the Phase Crystallogr. A 30, 477–481.
Problem. I. The Centrosymmetric Crystal. ACAMonograph Schneider, T. R. and Sheldrick, G. M. (2002). Substructure
Number 3. Edwards Brothers, Ann Arbor, MI. solution with SHELXD. Acta Crystallogr. D 58, 1772–1779.