Page 151 - Macromolecular Crystallography
P. 151

140  MACROMOLECULAR CRYS TALLOGRAPHY

        Bruker AXS (2005). XPREP, Version 2005/1. Bruker AXS  Hendrickson, W. A. (1991). Determination of macro-
          Inc., Madison, Wisconsin, USA.              molecular structures from anomalous diffraction of syn-
        Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L.,  chrotron radiation. Science 254, 51–58.
          Giacovazzo, C., Polidori, G. and Spagna, R. (2000).  Howell, P. L., Blessing, R. H., Smith, G. D. and Weeks,
          SIR2000, a program for the automatic ab initio crystal  C. M. (2000). Optimizing DREAR and SnB parameters
          structure solution of proteins. Acta Crystallogr. A 56,  for determining Se-atom substructures. Acta Crystallogr.
          451–457.                                    D 56, 604–617.
        Burla, M. C., Carrozzini, B., Cascarano, G. L., De Caro,  Jones, T. A., Zou, J. Y., Cowtan, S. W. and Kjeldgaard, M.
          L., Giacovazzo, C. and Polidori, G. (2003). Ab initio pro-  (1991). Improved methods for building protein models
          tein phasing at 1.4Å resolution. Acta Crystallogr. A 59,  in electron density maps and the location of errors in
          245–249.                                    these models. Acta Crystallogr. A 47, 110–119.
        Chowdhury, K., Bhattacharya, S.andMukherjee, M.(2005).  Karle, J. (1989). Linear algebraic analyses of structures
          Ab initio structure solution of nucleic acids and pro-  with one predominant type of anomalous scatterer. Acta
          teins by direct methods: reciprocal-space and real-space  Crystallogr. A 45, 303–307.
          approach. J. Appl. Cryst. 38, 217–222.     Karle, J. and Hauptman, H. (1956). A theory of phase
        Cochran, W. (1955). Relations between the phases of  determination for the four types of non-centrosymmetric
          structure factors. Acta Crystallogr. 8, 473–478.  space groups 1P222, 2P22, 3P 1 2, 3P 2 2. Acta Crystallogr.
        Debaerdemaeker, T. and Woolfson, M. M. (1983). On the  9, 635–651.
          application of phase relationships to complex structures.  Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G.,
          XXII. Techniques for random phase refinement. Acta  Declercq, J. P. and Woolfson, M.M. (1980). MULTAN80: a
          Crystallogr. A 39, 193–196.                 System of Computer Programs for the Automatic Solution of
        DeTitta, G. T., Weeks, C. M., Thuman, P., Miller, R.  Crystal Structures from X-ray Diffraction Data. Universities
          and Hauptman, H. A. (1994). Structure solution by  of York and Louvain.
          minimal-functionphaserefinementandFourierfiltering.  McCarthy, A. A., Baker, H. M., Shewry, S. C., Patchett,
          I. Theoretical basis. Acta Crystallogr. A 50, 203–210.  M. L. and Baker, E. N. (2001). Crystal structure of
        Foadi, J., Woolfson, M. M., Dodson, E. J., Wilson, K. S., Yao,  methylmalonyl-coenzyme A epimerase from P. sher-
          J.-X. and Zheng, C.-D. (2000). Aflexible and efficient pro-  manii: a novel enzymatic function on an ancient metal
          cedure for the solution and phase refinement of protein  binding scaffold. Structure 9, 637–646.
          structures. Acta Crystallogr. D 56, 1137–1147.  Miller, R., DeTitta, G. T., Jones, R., Langs, D. A., Weeks,
        Frazão, C., Sieker, L., Sheldrick, G.M., Lamzin, V., LeGall,J.  C. M., and Hauptman, H. A. (1993). On the application
          and Carrondo, M. A. (1999). Ab initio structure sol-  of the minimal principle to solve unknown structures.
          ution of a dimeric cytochrome c3 from Desulfovibrio gigas  Science 259, 1430–1433.
          containing disulfide bridges. J. Biol. Inorg. Chem. 4,  Miller, R., Gallo, S. M., Khalak, H. G., and Weeks, C. M.
          162–165.                                    (1994). SnB: crystal structure determination via Shake-
        Fujinaga, M. and Read, R. J. (1987). Experiences with a new  and-Bake. J. Appl. Cryst. 27, 613–621.
          translation-function program. J. Appl. Cryst. 20, 517–521.  Morris,  R. J.,  Perrakis,  A.,  and Lamzin,  V. S.
        Furey, W. and Swaminathan, S. (1997). PHASES-95: a  (2003). ARP/wARP and automatic interpretation of
          program package for processing and analyzing diffrac-  protein electron density maps. Method Enzymol. 374,
          tion data from macromolecules. Method Enzymol. 277,  229–244.
          590–620.                                   Rajakannan, V., Selvanayagam, S., Yamane, T., Shirai, T.,
        Germain, G. and Woolfson, M. M. (1968). On the applica-  Kobayashi, T., Ito, S. and Velmurugan, D. (2004a). The
          tion of phase relationships to complex structures. Acta  use of ACORN in solving a 39.5 kDa macromolecule with
          Crystallogr. B 24, 91–96.                   1.9Å resolution laboratory source data. J. Synch. Rad. 11,
        Grosse-Kunstleve, R. W. andAdams, P. D. (2003). Substruc-  358–362.
          ture search procedures for macromolecular structures.  Rajakannan, V., Yamane, T., Shirai, T., Kobayashi, T.,
          Acta Crystallogr. D 59, 1966–1973.          Ito, S., and Velmurugan, D. (2004b). Applications of
        Hauptman, H. A. (1974). On the theory and estimation  ACORN to data at 1.45Å resolution. J. Synch. Rad. 11,
          of the cosine invariants cos(ϕ l + ϕ m + ϕ n + ϕ p ). Acta  64–67.
          Crystallogr. A 30, 822–829.                Schenk, H. (1974). On the use of negative quartets. Acta
        Hauptman, H. A. and Karle, J. (1953). Solution of the Phase  Crystallogr. A 30, 477–481.
          Problem. I. The Centrosymmetric Crystal. ACAMonograph  Schneider, T. R. and Sheldrick, G. M. (2002). Substructure
          Number 3. Edwards Brothers, Ann Arbor, MI.  solution with SHELXD. Acta Crystallogr. D 58, 1772–1779.
   146   147   148   149   150   151   152   153   154   155   156