Page 53 - Macromolecular Crystallography
P. 53
42 MACROMOLECULAR CRYS TALLOGRAPHY
Chambers, S. P., Austen, D. A., Fulghum, J. R. and as fusion proteins in Escherichia coli. Protein Sci. 11,
Kim, W. M. (2004). High-throughput screening for solu- 313–321.
ble recombinant expressed kinases in Escherichia coli and Hartley, J. L., Temple, G. F. and Brasch, M. A. (2000). DNA
insect cells. Protein Expr. Purif. 36, 40–47. cloning using in vitro site-specific recombination. Genome
Cohen, S. L. and Chait, B. T. (2001). Mass spectrometry as Res. 10, 1788–1795.
a tool for protein crystallography. Annu. Rev. Biophys. Haun, R. S., Serventi, I. M. and Moss, J. (1992). Rapid,
Biomol. Struct. 30, 67–85. reliable ligation-independent cloning of PCR products
Cordingley, M. G., Register, R. B., Callahan, P. L., using modified plasmid vectors. Biotechniques 13, 515–
Garsky, V. M. and Colonno, R. J. (1989). Cleavage of small 518.
peptides in vitro by human rhinovirus 14 3C protease Hendrickson, W. A., Horton, J. R. and LeMaster, D. M.
expressed in Escherichia coli. J. Virol. 63, 5037–5045. (1990). Selenomethionyl proteins produced for analysis
Davies, A., et al. (2005). Optimisation and evaluation by multiwavelength anomalous diffraction (MAD):
of a high-throughput mammalian protein expression a vehicle for direct determination of three-dimensional
system. Protein Expr. Purif. 42, 111–121. structure. EMBO J. 9, 1665–1672.
Davis, S. J., Greene, A., Lullau, E. and Abbott, W. M. Holz, C., Hesse, O., Bolotina, N., Stahl, U. and Lang, C.
(1993). Expression of soluble recombinant glycoproteins (2002). A micro-scale process for high-throughput
with predefined glycosylation: application to the crys- expressionofcDNAsintheyeast Saccharomycescerevisiae.
tallization of the T-cell glycoprotein CD2. Protein Eng. 6, Protein Expr. Purif. 25, 372–378.
229–232. Holz, C., Prinz, B., Bolotina, N., Sievert, V., Bussow, K.,
Davis, S. J., Ikemizu, S., Collins, A. V., Fennelly, J. A., Simon, B., Stahl, U. and Lang, C. (2003). Establishing the
Harlos, K., Jones, E. Y. and Stuart, D. I. (2001). yeast Saccharomyces cerevisiae as a system for expression
Crystallization and functional analysis of a soluble deg- of human proteins on a proteome-scale. J. Struct. Funct.
lycosylated form of the human costimulatory molecule Genomics 4, 97–108.
B7–1. Acta Crystallogr. D 57, 605–608. Huang, R. Y., Boulton, S. J., Vidal, M., Almo, S. C., Bresnick,
Durocher, Y., Perret, S. and Kamen, A. (2002). High-level A. R. and Chance, M. R. (2003). High-throughput
and high-throughput recombinant protein production expression, purification, and characterization of recom-
by transient transfection of suspension-growing human binant Caenorhabditis elegans proteins. Biochem. Biophys.
293-EBNA1 cells. Nucleic Acids Res. 30, E9. Res. Commun. 307, 928–934.
Dyson, M. R., Shadbolt, S. P., Vincent, K. J., Perera, R. L. Kim, Y., Dementieva, I., Zhou, M., Wu, R., Lezondra, L.,
and McCafferty, J. (2004). Production of soluble mam- Quartey, P., et al. (2004). Automation of protein purifica-
malian proteins in Escherichia coli: identification of pro- tion for structural genomics. J. Struct. Funct. Genomics 5,
tein features that correlate with successful expression. 111–118.
BMC Biotechnol. 4, 32. Knaust, R. K. and Nordlund, P. (2001). Screening for soluble
Feliu, J. X., Cubarsi, R. and Villaverde, A. (1998). Opti- expression of recombinant proteins in a 96-well format.
mized release of recombinant proteins by ultrasonication Anal. Biochem. 297, 79–85.
of E. coli cells. Biotechnol. Bioeng. 58, 536–540. Laurila, M. R., Salgado, P. S., Makeyev, E. V., Nettleship, J.,
Folkers, G. E., van Buuren, B. N. and Kaptein, R. Stuart, D. I., Grimes, J. M. and Bamford, D. H. (2005).
(2004). Expression screening, protein purification and Gene silencing pathway RNA-dependent RNA poly-
NMR analysis of human protein domains for structural merase of Neurospora crassa: yeast expression and
genomics. J. Struct. Funct. Genomics 5, 119–131. crystallization of selenomethionated QDE-1 protein.
Gia-Fen, T. C. and Inouye, M. (1990). Suppression of the J. Struct. Biol. 149, 111–115.
negative effect of minor arginine codons on gene expres- Lesley, S. A., Kuhn, P., Godzik, A., Deacon, A. M., Math-
sion; preferential usage of minor codons within the first ews, I., Kreusch, A., et al. (2002). Structural genomics
25 codons of the Escherichia coli genes. Nucleic Acids Res. of the Thermotoga maritima proteome implemented in a
18, 1465–1473. high-throughput structure determination pipeline. Proc.
Habel, J. E., Ohren, J. F. and Borgstahl, G. E. (2001). Natl. Acad. Sci. USA 99, 11664–11669.
Dynamic light-scattering analysis of full-length human Luan, C. H., Qiu, S., Finley, J. B., Carson, M., Gray, R. J.,
RPA14/32 dimer: purification, crystallization and self- Huang, W., et al. (2004). High-throughput expression of
association. Acta Crystallogr. D 57, 254–259. C. elegans proteins. Genome Res. 14, 2102–2110.
Hammarstrom, M., Hellgren, N., van Den Berg, S., Malakhov, M. P., Mattern, M. R., Malakhova, O. A.,
Berglund, H. and Hard, T. (2002). Rapid screening for Drinker, M., Weeks, S. D. and Butt, T. R. (2004).
improved solubility of small human proteins produced SUMO fusions and SUMO-specific protease for efficient