Page 283 - Marks Calculation for Machine Design
P. 283

P1: Shibu
                          January 4, 2005
                                      14:56
                 Brown˙C06
        Brown.cls
                                     STATIC DESIGN AND COLUMN BUCKLING
                    moment of inertia for a circle is given by Eq. (6.32) as
                                                     1   4                        265
                                               I circle =  πr                   (6.32)
                                                     4
                                                         2
                      The area (A) of this circular cross section is (πr ), so the radius of gyration (k) for a
                    circle is given in Eq. (6.33) as


                                                     1  4
                                             I circle  4 πr   1  2  r
                                    k circle =    =     2  =   r =              (6.33)
                                            A circle  πr      4    2
                              U.S. Customary                      SI/Metric
                    Example 2. Determine whether the following  Example 2. Determine whether the follow-
                    circular column with diameter (d) and of length  ing circular column, with diameter (d), and of
                    (L) with fixed–fixed ends is safe under a com-  length (L) with fixed–fixed ends is safe under a
                    pressive axial force (P), where    compressive axial force (P), where
                        P = 12,000 lb                     P = 54,000 N
                        L = 3ft=36in                       L = 1m
                        d = 2in                            d = 5cm = 0.05 m
                                                                   3
                                3
                        E = 10 × 10 kpsi (aluminum)       E = 70 × 10 MPa (aluminum)
                       S y = 40 kpsi                      S y = 270 MPa
                     C ends = 1.5 (fixed–fixed) adjusted  C ends = 1.5 (fixed–fixed) adjusted
                    solution                           solution
                    Step 1. Using Eq. (6.33), calculate the radius  Step 1. Using Eq. (6.33), calculate the radius
                    of gyration (k) as                 of gyration (k) as
                               r  1in                          r  0.025 m
                           k =  =    = 0.5in                k =  =      = 0.0125 m
                               2   2                           2    2
                    Step 2. Calculate the slenderness ratio (L/k).  Step 2. Calculate the slenderness ratio (L/k).
                             L   36 in                         L    1m
                               =     = 72                        =       = 80
                             k   0.5in                         k   0.0125 m
                    Step3. Calculatetheminimumslendernessra-  Step3. Calculatetheminimumslendernessra-
                    tio(L/k) D fortheEulerformulafromEq.(6.29).  tio(L/k) D fortheEulerformulafromEq.(6.29).
                       L      2π CE                      L      2π CE
                                2    1/2                          2    1/2
                           =                                 =
                       k                                 k
                         D      S y                        D      S y
                                2         6    1/2                2         3      1/2
                              2π (1.5)(10 × 10 psi)             2π (1.5)(70 × 10 MPa)
                           =                                 =
                                  40,000 psi                         270 MPa
                                    6    1/2                           4      1/2
                              296 × 10 psi                      207.3 × 10 MPa
                           =                                 =
                               40,000 psi                          270 MPa
                           = (740) 1/2  = 86                 = (7,676) 1/2  = 88
   278   279   280   281   282   283   284   285   286   287   288