Page 405 - Marks Calculation for Machine Design
P. 405

P1: Naresh
                          January 4, 2005
                                      15:28
        Brown.cls
                 Brown˙C09
                              U.S. Customary  MACHINE ENERGY      SI/Metric       387
                    solution                           solution
                    Step 1. Using Eq. (9.12), calculate the spring  Step 1. Using Eq. (9.12), calculate the spring
                    index (C) as                       index (C) as
                               D   0.9in                         D   0.022 m
                            C =  =      = 9                  C =   =       = 11
                               d   0.1in                         d   0.002 m
                    Step 2. Using Eq. (9.14), calculate the shear-  Step 2. Using Eq. (9.14), calculate the shear-
                    stress correction factor (K s ) as  stress correction factor (K s ) as
                               1       1                         1        1
                          K s =  + 1 =   + 1                K s =  + 1 =    + 1
                               2C     2(9)                       2C     2(11)
                            = (0.056) + 1 = 1.056              = (0.045) + 1 = 1.045
                    Step 3. Using Eq. (9.16), calculate the  Step 3. Using Eq. (9.16), calculate the
                    Bergstr¨asser factor (K B ) as     Bergstr¨asser factor (K B ) as
                         4C + 2  4(9) + 2  38               4C + 2  4(11) + 2  46
                     K B =     =       =   = 1.152     K B =     =        =   = 1.122
                         4C − 3  4(9) − 3  33               4C − 3  4(11) − 3  41
                    Step 4. Use Eqs. (9.47) and (9.48) to find the  Step 4. Use Eqs. (9.47) and (9.48) to find the
                    mean and alternating spring forces.  maximum and minimum spring forces.
                          F max + F min  (40 lb) + (10 lb)   F max + F min  (175 N) + (45 N)
                      F m =        =                    F m =        =
                              2           2                     2            2
                          50 lb                              220 N
                        =     = 25 lb                      =     = 110 N
                            2                                 2
                          F max − F min  (40 lb) − (10 lb)   F max − F min  (175 N) − (45 N)
                      F a =        =                    F a =        =
                              2           2                     2            2
                          30 lb                              130 N
                        =     = 15 lb                     =      = 65 N
                           2                                  2
                    Step 5. Use the shear-stress correction factor  Step 5. Use the shear-stress correction factor
                    (K s ) found in step 2 in Eq. (9.49) to find the  (K s ) found in step 2 in Eq. (9.49) to find the
                    mean shear stress (τ m ).          mean shear stress (τ m ).
                               8F m D                           8F m D
                        τ m = K s                         τ m = K s
                               πd  3                             πd 3
                                  (8)(25 lb)(0.9in)                (8)(110 N)(0.022 m)
                           = (1.056)                        = (1.045)
                                    π(0.1in) 3                        π(0.002 m) 3
                                   180 lb                             19.36 N
                           = (1.056)                        = (1.045)
                                  0.00314 in 2                     0.000000025 m 2
                           = (1.056)(57.3 kpsi)             = (1.045)(770.3MPa)
                           = 60.5 kpsi                      = 805 MPa
                    Step 6. Use the Bergstrasser factor (K B ) found  Step 6. Use the Bergstrasser factor (K B ) found
                    in step 3 in Eq. (9.50) to find the alternating  in step 3 in Eq. (9.50) to find the alternating
                    shear stress (τ a ).               shear stress (τ a ).
                               8F a D                            8F a D
                         τ a = K B  3                      τ a = K B  3
                               πd                                πd
                                  (8)(15 lb)(0.9in)                (8)(65 N)(0.022 m)
                           = (1.152)                         = (1.122)
                                    π(0.1in) 3                        π(0.002 m) 3
                                   108 lb                             11.44 N
                           = (1.152)                         = (1.122)
                                  0.00314 in 2                     0.000000025 m 2
                           = (1.152)(34.4 kpsi)              = (1.122)(455.2MPa)
                           = 39.6 kpsi                       = 511 MPa
   400   401   402   403   404   405   406   407   408   409   410