Page 271 - Mathematical Models and Algorithms for Power System Optimization
P. 271

Optimization Method for Load Frequency Feed Forward Control 263
                    where d 1 , …, d n are:

                                                                    3 1
                                               1
                                            2
                                     2   3                             2   3
                                      d 1                                b 1
                                                        1           7
                                       ⋮                                 ⋮
                                               a 1
                                            6
                                     6   7  6                       7 6    7
                                     6   7  6      ⋱                7 6    7
                                                                                           (7.114)
                                     6   7  6                       7 6    7
                                     6  ⋮ 7 ¼ 6                     7 6  ⋮ 7
                                               a 2      a 1  1
                                     6   7  6                       7 6    7
                                     4  ⋮ 5  6                      7 4  ⋮ 5
                                               ⋮            ⋱
                                            4                       5
                                      d n                                b n
                                              a n 1    a n 2 ⋯ a 1 1
                    Rearrange Eq. (7.113) to get the state equation:
                                                                                           ð7:115Þ







                    or alternatively, the transfer function is represented the factorization form, or rewrite
                    Eq. (7.112) into the factorization form:

                                         ð
                                                  ð
                                        KS + b 1 Þ⋯ S + b m Þ
                              DSðÞ ¼
                                     ð S + a 1 Þ S + a 2 Þ⋯ S + a n Þ
                                                     ð
                                            ð
                                                                   1           K
                                     S + b 1  S + b 2   S + b m                            (7.116)
                                   ¼               ⋯                    ⋯
                                     S + a 1  S + a 2   S + a m  S + a m +1   S + a n
                                   ¼ D 1 SðÞ   D 2 SðÞ⋯D n SðÞ
                    D(S) can be depicted into the following block diagram:





               where

                                          S + b 1        S + b 2           K
                                  D 1 SðÞ ¼    , D 2 SðÞ ¼    ,…,D n SðÞ ¼
                                          S + a 1        S + a 2          S + a n
               List the first-order differential equations of each block, and make them in a simultaneous
               way to get the state equation of the whole system.
   266   267   268   269   270   271   272   273   274   275   276