Page 275 - Mathematical Models and Algorithms for Power System Optimization
P. 275
Optimization Method for Load Frequency Feed Forward Control 267
Table 7.3 Values of autocorrelation function and partial correlation function for ΔP L sequence
^ ρ ϕ
^
1 0.8541 0.854148
11
^
^ ρ ϕ
2 0.788 0.215901
22
^ ρ ϕ
^
3 0.7684 0.218149
33
^
^ ρ ϕ
4 0.7571 0.152241
44
^
^ ρ ϕ
5 0.68 0.162649
55
^ ρ ϕ
^
6 0.6391 0.011698
66
^
^ ρ ϕ
7 0.6174 0.026242
77
^ ρ ϕ
^
8 0.5749 0.057051
88
^
^ ρ ϕ
0.5004 0.120347
9
99
^ ρ ^
ϕ
10 0.4663 0.009277
1010
^ ρ ϕ
^
11 0.4416 0.010564
1111
^
^ ρ ϕ
12 0.3976 0.021949
1212
^ ρ ϕ
^
13 0.3661 0.065523
1313
^
^ ρ 0.3389 ϕ 0.020765
14
1414
^ ρ ϕ
^
15 0.3081 0.023581
1515
^ ρ ϕ
^
16 0.2801 0.029347
1616
^ ρ ϕ
^
17 0.2727 0.063110
1717
^ ρ ϕ
^
18 0.2683 0.048860
1818
^
^ ρ ϕ
19 0.2499 0.000147
1919
^ ρ ϕ
^
20 0.2204 0.064544
2020
The corresponding transition matrix of discrete state equation [see Eq. (7.31)] is:
2 3
0:0 1:0 0:0
∗ 6 0:0 0:0 7
(7.123)
ϕ τðÞ ¼ 4 1:0 5
0:218 0:0698 0:623
T
H ∗ ¼ 1, 0, 0½
where time interval is τ¼60s in the sample time series. Because the time interval τ 1 ¼1s and
τ 1 ¼4s are adopted in the estimator controller, the transition matrix ϕ∗(τ) must be transformed
into ϕ∗(τ 1 ), which is calculated with the method proposed in Section 7.7:
2 3
0:663 1:333 1:036
∗
ϕ 1ðÞ ¼ 0:226 0:591 0:687 5
4
0:149 0:179 1:019
2 3
0:582 1:4 1:0196
∗
ϕ 4ðÞ ¼ 0:222 0:511 0:765 5
4
0:167 0:167 0:988
7.8.3 Simulation Results of Local Estimator and Central Estimator
To facilitate the test, assuming that the power system contains only a thermal generator and a
hydro generator, Fig. 7.18 shows the block diagram for the two-unit system.