Page 264 - Mathematical Techniques of Fractional Order Systems
P. 264

Design of Fractional Order Fuzzy Sliding Mode Controller Chapter | 9  253



















             FIGURE 9.1 Two-link planar rigid robotic manipulator diagram.
                                            1
                                        K 5   mv 2                      ð9:1Þ
                                            2
             where, v is considered as the linear velocity of the of the link. Now, the
             linear velocity of link-1 can be expressed as:
                                               _
                                         v 1 5 l 1 θ 1                  ð9:2Þ
                For link-1, the kinetic energy can be written as:

                                            1
                                       K 1 5  m 1 v 2                   ð9:3Þ
                                            2    1
                From (9.2) and (9.3)
                                          1   2 _
                                                  2
                                     K 1 5 m 1 l θ 1                    ð9:4Þ
                                              1
                                          2
                For link-1, the potential energy can be expressed as:
                                     P 1 5 m 1 l 1 g sin θ 1            ð9:5Þ
                To find the linear velocity of link-2, the Cartesian coordinates of the end-
             point of link-2 are needed. After taking the first derivative, linear velocity of
             link-2 can be easily obtained. Now, the Cartesian coordinates of the end-
             point of second link are:
                                x 2 5 l 1 cos θ 1 1 l 2 cos θ 1 1 θ 2 Þ  ð9:6Þ
                                                  ð
                                 y 2 5 l 1 sinθ 1 1 l 2 sin θ 1 1 θ 2 Þ  ð9:7Þ
                                                 ð
                Further, the linear velocity of link-2 can be written as:
                                          q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                             2
                                      v 2 5  _ x 2 1 _ y  2             ð9:8Þ
                                                  2
                From (9.8),
                                            2
                                        2
                                       v 5 _ x 2 1 _ y  2               ð9:9Þ
                                        2        2
   259   260   261   262   263   264   265   266   267   268   269