Page 266 - Mathematical Techniques of Fractional Order Systems
P. 266

Design of Fractional Order Fuzzy Sliding Mode Controller Chapter | 9  255


                The dynamic model of the two-link manipulator system can be obtained
             by Lagrangian-Euler formula which is expressed as:


                                         d  @L    @L
                                    τ i 5    _  2                      ð9:19Þ
                                        dt @θ i   @θ i
             where, i represents the number of links present in the manipulator system.
                To find the torque for link-1, (9.19) can be expressed as:
                                        d     @L     @L
                                    τ 1 5    _  2                      ð9:20Þ
                                        dt @θ 1   @θ 1
                Further, from (9.18),

                                 @L
                                    5 2m 1 gl 1 C 1 1 m 2 gl 2 C 12    ð9:21Þ
                                 @θ 1
                   @L      2 _       2 _  2 _  2 _         _  _
                    _  5 m 1 l θ 1 1 m 2 l θ 1 1 l θ 1 1 l θ 2 1 l 1 l 2 C 2 2θ 1 1 θ 2  ð9:22Þ
                           1
                                              2
                                         2
                                   1
                  @θ 1
             d     @L    5m 1 l θ 1m 2 l θ 1l θ 1l θ 2l 1 l 2 S 2 θ 2 2θ 1 1θ 2 1l 1 l 2 C 2 2θ 1θ ̈
                                                          _
                         2 ̈
                                 2 ̈
                                     2 ̈
                                                                      ̈
                                                   _
                                          2 ̈
                                                       _




                 _       1 1     1 1  2 1  2 2                        1   2
             dt @θ 1
                                                                       ð9:23Þ
                Further, from (9.20) (9.23), the dynamic equation of manipulator for
             link-1 can be calculated which can be expressed as:
                         2           2                 2

                   2    d θ 1   2   d θ 2   2         d θ 1
              τ 1 5 l m 2    1 l m 2     1 l ðm 1 1 m 2 Þ
                   2      2     2     2     1            2
                        dt           dt                dt
                                                                          2
                                                                     dθ 2
                             ð
                                                    ðÞ
                                                                 ðÞ
                   1 m 2 gl 2 cos θ 1 1 θ 2 Þ 1 ðm 1 1 m 2 Þl 1 g cos θ 1 2 m 2 l 1 l 2 sin θ 2
                                                                      dt
                                                              2

                                  dθ 1  dθ 2                d θ 1  d2θ 2
                                                       ðÞ 2
                              ðÞ
                   2 2m 2 l 1 l 2 sin θ 2    1 m 2 l 1 l 2 cos θ 2  2  1  2
                                   dt    dt                  dt     dt
                                                                       ð9:24Þ
                To find the torque for link-2, (9.19) can be written as:

                                        d   @L     @L
                                    τ 2 5    _  2                      ð9:25Þ
                                        dt @θ 2   @θ 2
                Now, from (9.18),
                           @L                         2  _ _
                                                   _
                              52m 2 gl 2 C 12 2 2l 1 l 2 S 2  θ 1  1 θ 1 θ 2  ð9:26Þ
                           @θ 2
                             @L   1      2     _  _       _
                                       2
                              _  5  2  m 2 l 2θ 2 1 2θ 1 1 2l 1 l 2 C 2 θ 1  ð9:27Þ
                            @θ 2
   261   262   263   264   265   266   267   268   269   270   271