Page 267 - Mathematical Techniques of Fractional Order Systems
P. 267

256  Mathematical Techniques of Fractional Order Systems




                             1
                   d  @L  5 m 2 l 2θ 1 2θ ̈           ̈    _ _
                                     ̈
                                  2


                                                      1
                       _          2  2    1  1 2l 1 l 2 C 2 θ 2 S 2 θ 1 θ 2  ð9:28Þ
                  dt @θ 2    2
               From (9.25) (9.28), the dynamic equation of manipulator for link-2 can
            be expressed as:
                                   2                2           2     2
                              dθ 1                d θ 1     2  d θ 1  d θ 2
                                             ðÞ
                         ðÞ
              τ 2 5 m 2 l 1 l 2 sin θ 2  1 m 2 l 1 l 2 cos θ 2  2  1 m 2 l 2  2  1  2
                               dt                  dt          dt     dt
                  1 m 2 l 2 g cos θ 1 1 θ 2 Þ
                            ð
                                                                      ð9:29Þ
               The dynamic equation of two-link rigid robotic manipulator system can
            also be expressed as:
                                        €       _
                                 τ 5 M θ ðÞθ 1 V θ;θ 1 G θ ðÞ         ð9:30Þ
                             T

            where θ 5 θ 1  θ 2  is the angular position of end point of two links.
                     2           2                 m 2 l 1 l 2 cosθ 2 1 m 2 l 2

                     1
               M 5  l ðm 1 1 m 2 Þ 1 l m 2 1 2m 2 l 1 l 2 cosθ 2  2  2  ð9:31Þ
                                 2
                                          2
                           m 2 l 1 l 2 cosθ 2 1 m 2 l 2  m 2 l 2
                                     0    10    1
                       2                                           3
                                                                 2

                                       dθ 1  dθ 2
                                                              dθ 2
                          2m 2 l 1 l 2 sinθ 2  @  A@  A  m 2 l 1 l 2 sinθ 2
                       6               dt     dt              dt   7
                   _


               V θ;θ 5  6                                          7  ð9:32Þ
                                                                   7
                       6
                       6                                           7
                                                     2
                       4                                           5
                                                 dθ 1
                                      m 2 l 1 l 2 sinθ 2
                                                 dt

                       G θðÞ 5  ðm 1 1 m 2 Þl 1 g cosθ 1 1 m 2 gl 2 cos ðθ 1 1 θ 2 Þ  ð9:33Þ
                                       m 2 gl 2 cosðθ 1 1 θ 2 Þ
                           _
            where MðθÞ, Vðθ;θÞ, and GðθÞ are inertia, centripetal, and gravitational matri-
            ces respectively.
               The parameters used for the manipulator model for simulation is described
            in Table 9.1 as,
              TABLE 9.1 Parameter of Two-Link Manipulator System
              Parameter                   Symbol        Value         Unit
              Length of link-1            l 1           0.8           m
              Length of link-2            l 2           0.4           m
              Mass of link-1              m 1           0.1           kg
              Mass of link-2              m 2           0.1           kg
              Acceleration due to gravity  g            9.8           m/s 2
   262   263   264   265   266   267   268   269   270   271   272