Page 265 - Mathematical Techniques of Fractional Order Systems
P. 265

254  Mathematical Techniques of Fractional Order Systems


               From (9.6),
                                       _                _  _
                                               ð
                          _ x 2 52 l 1 sin θ 1 θ 1 2 l 2 sin θ 1 1 θ 2 Þ θ 1 1 θ 2  ð9:10Þ
               From (9.7),
                                      _                _  _
                                              ð
                           _ y 5 l 1 cos θ 1 θ 1 1 l 2 cos θ 1 1 θ 2 Þ θ 1 1 θ 2  ð9:11Þ
                            2
               Now, from (9.9) (9.11),
                                                     _
                         2
                2   2 2 _    2 2 _   _    2             2  _ _

               v 5 l S θ 1  1 l S  θ 1 1θ 2  1 2l 1 l 2 S 1 S 12  θ 1  1 θ 1 θ 2
                2   1 1      2 12
                                                                      ð9:12Þ
                                                         _

                            2

                      2  2 _    2  2 _  _    2             2   _ _

                   1 l C θ 1  1 l C  θ 1 1θ 2  1 2l 1 l 2 C 1 C 12  θ 1  1 θ 1 θ 2
                      1  1      2  12
               To shorten the calculation, some abbreviations are used in (9.12) where,
            S 1 5 sin θ 1 , C 1 5 cos θ 1 , S 2 5 sin θ 2 , C 2 5 cos θ 2 , S 12 5 sin θ 1 1 θ 2 Þ, and
                                                               ð
            C 12 5 cos θ 1 1 θ 2 Þ
                     ð
               Further (9.12) can be expressed as:
                               2
                                                      _
                        2  2 _     2 _   _    2          2  _ _

                       v 5 l θ 1  1 l θ 1 1θ 2 1 2l 1 l 2 C 2  θ 1  1 θ 1 θ 2  ð9:13Þ
                        2  1       2
               The kinetic energy of second link is expressed as:
                                           1
                                       K 2 5  m 2 v 2 2               ð9:14Þ
                                           2
                      1  h  2 _    2 _   _    2          2  _ _   i
                                                      _
                               2

                 K 2 5  m 2 l θ 1  1 l θ 1 1θ 2 1 2l 1 l 2 C 2  θ 1  1 θ 1 θ 2  ð9:15Þ
                                   2
                           1
                      2
               The potential energy of link-2 can be written as:
                                  P 2 5 m 1 l 1 gS 1 1 m 2 l 2 gS 12  ð9:16Þ
               A scalar function, called the Lagrangian function is defined as the differ-
            ence between the total kinetic energy and total potential energy of a mechan-
            ical system.
                                  Lagrangian; L 5 K 2 PÞ              ð9:17Þ
                                               ð
            where, K 5 K 1 1 K 2 Þ is represented as the total kinetic energy, whereas
                      ð
            P 5 P 1 1 P 2 Þ is represented as the total potential energy of the two-link
                ð
            manipulator system.
               For the present considered system, the Lagrangian can be written as:
                  1       2   1  h     2            2            2      i
                                           2 _
                                                                    _ _
                      2 _
                                                 _
                                   2 _
              L 5  m 1 l θ 1  1  m 2 l θ 1  1 l θ 1 1θ 2 1 2l 1 l 2 C 2  _ θ 1  1 θ 1 θ 2
                      1
                                           2
                                   1
                  2           2
                  2 m 1 l 1 gS 1 2 m 1 l 1 gS 1 2 m 2 l 2 gS 12
                                                                      ð9:18Þ
   260   261   262   263   264   265   266   267   268   269   270