Page 299 - Mathematical Techniques of Fractional Order Systems
P. 299

288  Mathematical Techniques of Fractional Order Systems


               Then consider the following Lorenz system (Sun et al., 2016):
                              α
                             D y 1 5 b 1 ðy 2 2 y 1 Þ 1 u 1
                              α
                             D y 2 5 b 2 y 1 2 y 2 2 y 1 y 3 1 u 2    ð10:4Þ
                              α
                             D y 3 52 b 3 y 3 1  1  ðy y 2 1 y 1 y Þ 1 u 3
                                              1
                                                     2
                                           2
            where y i 5 y ri 1 y iim j, y i AC for i 5 1; 2, y i 5 y ri , y i AR for i 5 3 , and finally y i
            is the complex conjugate. The input variables are u i 5 u ri 1 u iim j, u i AC for
            i 5 1; 2, u i 5 u ri , u i AR for i 5 3. In order to set the system in chaotic regime
            the constant values must be b 1 5 10, b 2 5 180, and b 3 5 1 with the initial
                                              T
            condition yð0Þ 5 ½0:110:1j; 0:110:1j; 0:1Š  and α 5 0:95 so the following
            phase portraits for the real and imaginary parts are shown in Figs. 10.3 and
            10.4, respectively.
               Finally the following Lorenz hyperchaotic system is given by (Wang
            et al., 2014)
                               α
                              D y 1 5 c 1 ðy 2 2 y 1 Þ 1 y 4 j 1 u 1
                               α
                              D y 2 5 c 3 y 1 2 y 2 2 y 1 y 3 1 y 4 j 1 u 2
                                    1
                               α
                                       1
                                               2
                              D y 3 5 ðy y 2 1 y 1 y Þ 2 c 2 y 3 1 u 3
                                    2                                 ð10:5Þ
                               α    1
                              D y 4 5 ðy y 2 1 y 1 y Þ 2 c 4 y 4 1 u 4
                                               2
                                       1
                                    2
            where y i 5 y ri 1 y iim j, y i AC for i 5 1; 2, y i 5 y ri , y i AR for i 5 3; 4, and
            finally y is the complex conjugate. The input variables are u i 5 u ri 1 u iim j,
                   i






















            FIGURE 10.3 Phase portrait of the real part of the chaotic Lorenz system.
   294   295   296   297   298   299   300   301   302   303   304