Page 301 - Mathematical Techniques of Fractional Order Systems
P. 301

290  Mathematical Techniques of Fractional Order Systems



























            FIGURE 10.6 Phase portrait for the imaginary part of the complex hyperchaotic system.



            10.3 TERMINAL SLIDING MODE STABILIZATION OF
            FRACTIONAL ORDER COMPLEX CHAOTIC SYSTEMS
            Before the derivations of the terminal sliding mode controller and synchroni-
            zation strategies for the fractional order complex chaotic and hyperchaotic
            system, the systems (10.3) (10.5) are divided in real and imaginary parts,
            respectively, as described below:
                          α
                         D z r1 5 a 1 ðz r2 2 z r1 Þ 1 u r1
                          α
                         D z 1im 5 a 1 ðz 2im 2 z 1im Þ 1 u 1im
                          α
                         D z r2 5 ða 3 2 a 1 Þz r1 2 z r1 z r3 1 a 3 z r2 1 u r2  ð10:6Þ
                          α
                         D z 2im 5 ða 3 2 a 1 Þz 1im 2 z 1im z r3 1 a 3 z 2im 1 u 2im
                          α
                         D z r3 52 a 2 z r3 1 z r1 z r2 1 z 1im z 2im 1 u r3
                          α
                         D y r1 5 b 1 ðy r2 2 y r1 Þ 1 u r1
                          α
                         D y 1im 5 b 1 ðy 2im 2 y 1im Þ 1 u 1im
                          α
                         D y r2 5 b 2 y r1 2 y r2 2 y r1 y r3 1 u r2  ð10:7Þ
                          α
                         D y 2im 5 b 2 y 1im 2 y 2im 2 y 1im y r3 2 u 2im
                          α
                         D y r3 52 b 3 y r3 1 y r1 y r2 1 y 1im y 2im 1 u r3
                          α
                         D y r1 5 c 1 ðy r2 2 y r1 Þ 1 u r1
                          α
                         D y 1im 5 c 1 ðy 2im 2 y 1im Þ 1 y r4 1 u 1im
                          α
                         D y r2 5 c 3 y r1 2 y r2 2 y r1 y r3 1 u r2
                          α                                           ð10:8Þ
                         D y 2im 5 c 3 y 1im 2 y 2im 2 y 1im y r3 1 y r4 1 u 2im
                          α
                         D y r3 5 y r1 y r2 1 y 1im y 2im 2 c 2 y r3 1 u r3
                          α
                         D y r4 5 y r1 y r2 1 y 1im y 2im 2 σy r4 1 u r4
   296   297   298   299   300   301   302   303   304   305   306