Page 302 - Mathematical Techniques of Fractional Order Systems
P. 302

Sliding Mode Stabilization and Synchronization Chapter | 10  291


             so for the terminal sliding mode controller design consider the following
             fractional order dynamical system:
                                     α
                                   D xðtÞ 5 fðxðtÞÞ 1 UðtÞ             ð10:9Þ
                                                    n
                         n
             where xðtÞAR is the state variable, fðxðtÞÞAR is a nonlinear vector, and
                   n
             UðtÞAR is the system input. So, consider the following vector:
                                           0       1
                                             f 1 ðxðtÞÞ
                                    fðxðtÞÞ 5  @  ^  A                ð10:10Þ
                                             f n ðxðtÞÞ
             so the terminal sliding mode controller for the stabilization of system (10.6)
             and (10.8) is obtained by the following theorem (Aghababa, 2015;
             Komurcugil, 2012):

                           The  following  terminal  sliding  mode  control  law
             Theorem   1:
                                           ρ
             u i ðtÞ 5 k i D 12α ðx i ðtÞ 1 signðx i ðtÞÞjx i ðtÞj Þ 2 f i ðxðtÞÞ 2 s i stabilizes the system
             (10.9) in its equilibrium point where k i is the sliding mode gain and s i is the
             sliding mode surface defined later for i 5 1; :::; n.

             Proof: Consider the following sliding mode surface:
                                                            ρ
                     s i ðtÞ 5 D α21 x i ðtÞ 1 k i D 2α  ðx i ðtÞ 1 signðx i ðtÞÞjx i ðtÞj Þ  ð10:11Þ
             and the following Lyapunov function (Aghababa, 2015):
                                                 n
                                                X
                                  VðtÞ 5 :SðtÞ: 5  js i ðtÞj          ð10:12Þ
                                            1
                                                i51
             so deriving (10.12) yields:
                                          n
                                    _
                                         X
                                   VðtÞ 5   signðs i ðtÞÞ_ s i        ð10:13Þ
                                          i51
             and implementing the fractional order calculus properties explained in
             Section 10.2, the following result is obtained:
                       n
                                                                       ρ
                      X
                _
                VðtÞ 5   signðs i ðtÞÞ½f i ðxðtÞÞ 1 u i ðtÞ 1 k i D 12α ðx i ðtÞ 1 signðx i ðtÞÞjx i ðtÞj ފ
                      i51
                                                                      ð10:14Þ
             so by selecting the following control law:
                            12α                  ρ
                   u i ðtÞ 5 k i D  ðx i ðtÞ 1 signðx i ðtÞÞjx i ðtÞj Þ 2 f i ðxðtÞÞ 2 s i ðtÞ  ð10:15Þ
                Then, (10.14) becomes:
                                            n
                                    _
                                           X
                                   VðtÞ 52    js i ðtÞj # 0           ð10:16Þ
                                           i51
             and this completes the proof.
   297   298   299   300   301   302   303   304   305   306   307