Page 304 - Mathematical Techniques of Fractional Order Systems
P. 304

Sliding Mode Stabilization and Synchronization Chapter | 10  293


             Theorem 2: The adaptive control law synchronizes chaotic and hyperchaotic
             systems (identical and nonidentical) with the following control law
             (Aghababa, 2015; Komurcugil, 2012):
                                                 12α         ρ
                            u i 5 s i 1 f i ðzÞ 2 g i ðyÞ 1 k i D  signðe i Þje i j  ð10:21Þ
             and the following adaptive gain:
                                    _
                                   k i 5  2 signðs i ÞD 12α e i       ð10:22Þ
                                             Γ i
             where s i is the sliding surface, e i 5 z i 2 y i is the error variable, and Γ i and
             k i are the adaptive law and controller gain constants.

             Proof: Consider the following sliding surface (Aghababa, 2015):
                                                            ρ
                     s i ðtÞ 5 D α21 e i ðtÞ 1 k i D 2α  ðe i ðtÞ 1 signðe i ðtÞÞje i ðtÞj Þ  ð10:23Þ
             and the following Lyapunov function:
                                                        n
                                               n
                                     n
                                   1  X       X       1  X
                                          2
                     VðtÞ 5 :SðtÞ: 1   Γ i k 5   js i j 1  Γ i k 2    ð10:24Þ
                                1         i                  i
                                   2                  2
                                     i51      i51       i51
             so the drive system is defined by:
                                         α
                                        D Z 5 fðZÞ                    ð10:25Þ
             and the response system is given by:
                                       α
                                      D Y 5 gðYÞ 1 U                  ð10:26Þ
             and the definition of (10.25) and (10.26) are similar to (10.9), defining the
             error variable as:
                                        e i 5 z i 2 y i               ð10:27Þ
                Then, the first derivative of (10.24) is given by:
                                                   n
                                      n           X
                                _
                                                         _
                                     X
                               VðtÞ 5   signðs i Þ_ s i 1  Γ i k i k i  ð10:28Þ
                                     i51          i51
             so by implementing the properties of fractional calculus and Section 10.2,
             (10.28) becomes:
                      n
                                                                        ρ
                _
                     X
               VðtÞ 5   signðs i Þ½f i ðzÞ 2 g i ðyÞ 2 u i 2 s i 1 k i D 12α e i 1 k i D 12α signðe i Þje i j Š
                     i51
                        n
                       X
                     1    Γ i k i k i _
                       i51
                                                                      ð10:29Þ
             so with the following control and adaptive laws the systems are
             synchronized.
   299   300   301   302   303   304   305   306   307   308   309