Page 325 - Mathematical Techniques of Fractional Order Systems
P. 325

314  Mathematical Techniques of Fractional Order Systems


            Grassi, G., Ouannas, A., Azar, A.T., Radwan, A.G., Volos, C., Pham, V.-T., et al., 2017. Chaos
               synchronisation of continuous systems via scalar signal. In: 6th International Conference on
               Modern Circuits and Systems Technologies (MOCAST), pp. 1 4.
            Huang, X., Wang, Z., Li, Y., Lu, J., 2014. Design of fuzzy state feedback controller for robust
               stabilization of uncertain fractional-order chaotic systems. J. Franklin Institute 351 (12),
               5480 5493.
            Komurcugil, H., 2012. Adaptive terminal sliding-mode control strategy for dc-dc buck conver-
               ters. ISA Trans. 51, 673 681.
            Lamamra, K., Vaidyanathan, S., Azar, A.T., Ben Salah, C., 2017. Chaotic system modelling
               using a neural network with optimized structure. In: Azar, A.T., Vaidyanathan, S., Ouannas,
               A. (Eds.), Fractional Order Control and Synchronization of Chaotic Systems. Springer
               International Publishing, Cham, pp. 833 856.
            Li, C., Su, K., Tong, Y., Li, H., 2013a. Robust synchronization for a class of fractional-order
               chaotic and hyperchaotic systems. Optik 124 (18), 3242 3245.
            Li, C., Su, K., Zhang, J., Wei, D., 2013b. Robust control for fractional-order four-wing hyperch-
               aotic system using lmi. Optik 124 (22), 5807 5810.
            Li, R., 2016. Adaptive track control for fractional-order chaotic systems with or without uncer-
               tainty. Optik 127 (23), 11263 11276.
            Li, R., Li, W., 2015. Suppressing chaos for a class of fractional-order chaotic systems by adap-
               tive integer-order and fractional-order feedback control. Optik 126 (21), 2965 2973.
            Lorenz, E.N., 1963. Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130 141.
            Mahmoud, E., 2014. Generation and suppression of a new hyperchaotic nonlinear model with
               complex variables. Appl. Math. Model. 38 (17-18), 4445 4459.
            Matouk, A., 2011. Chaos, feedback control and synchronization of a fractional-order modified
               autonomous van der pol-duffing circuit. Commun. Nonlinear Sci. Numer. Simul. 16 (2),
               975 986.
            Meghni, B., Dib, D., Azar, A.T., Ghoudelbourk, S., Saadoun, A., 2017. Robust adaptive supervi-
               sory fractional order controller for optimal energy management in wind turbine with battery
               storage. In: Azar, A.T., Vaidyanathan, S., Ouannas, A. (Eds.), Fractional Order Control and
               Synchronization  of  Chaotic  Systems.  Springer  International  Publishing,  Cham,
               pp. 165 202.
            Moysis, L., Azar, A.T., 2017. New discrete time 2d chaotic maps. Int. J. System Dynam.
               Applicat. 6 (1), 77 104.
            Ouannas, A., Azar, A.T., Abu-Saris, R., 2016a. A new type of hybrid synchronization between
               arbitrary hyperchaotic maps. Int. J. Mach. Learn. Cybern.
            Ouannas, A., Azar, A.T., Radwan, A.G., 2016b. On inverse problem of generalized synchroniza-
               tion between different dimensional integer-order and fractional-order chaotic systems. In:
               2016 28th International Conference on Microelectronics (ICM). pp. 193 196.
            Ouannas, A., Azar, A.T., Abu-Saris, R., 2017a. A new type of hybrid synchronization between
               arbitrary hyperchaotic maps. Int. J. Mach. Learn. Cybern. 8 (6), 1887 1894. URL https://
               doi.org/10.1007/s13042-016-0566-3.
            Ouannas, A., Azar, A.T., Vaidyanathan, S., 2017b. New hybrid synchronization schemes based
               on coexistence of various types of synchronization between master-slave hyperchaotic sys-
               tems. Int. J. Comp. Applicat. Technol. 55 (2), 112 120.
            Ouannas, A., Azar, A.T., Vaidyanathan, S., 2017c. On a simple approach for q-s synchronization
               of chaotic dynamical systems in continuous-time. Int. J. Comp. Sci. Math. 8 (1), 20 27.
   320   321   322   323   324   325   326   327   328   329   330