Page 324 - Mathematical Techniques of Fractional Order Systems
P. 324

Sliding Mode Stabilization and Synchronization Chapter | 10  313


             REFERENCES
             Abedini, M., Gomroki, M., Salarieh, H., Meghdari, A., 2014. Identification of 4d l hyper-chaotic
                system using identical systems synchronization and fractional adaptation law. Appl. Math.
                Model. 38 (19-20), 4652 4661.
             Aghababa, M.P., 2015. A fractional sliding mode for finite-time control scheme with application
                to stabilization of electrostatic and electromechanical transducer. Appl. Math. Model. 39,
                6103 6113.
             Akbarzadeh-T, M.-R., Hosseini, S., Naghibi-Sistani, M.-B., 2017. Stable indirect adaptive inter-
                val type-2 fuzzy sliding-based control and synchronization of two different chaotic systems.
                Appl. Soft Comput. J. 55 (2017), 576 587.
             Azar, A.T., Vaidyanathan, S., 2015a. Chaos Modeling and Control Systems Design. Vol. 581 of
                Studies inComputational Intelligence. Studies in Computational Intelligence. Springer,
                Germany.
             Azar, A.T., Vaidyanathan, S., 2015b. Computational Intelligence Applications in Modelling and
                Control. Vol. 575. Studies inComputational Intelligence. Springer, Berlin, Germany.
             Azar, A.T., Vaidyanathan, S., 2015c. Handboook of Research on Advanced Intelligent Control
                Engineering and Automation. IGI Global, New York, USA.
             Azar, A.T., Vaidyanathan, S., 2016. Advances in Chaos Theory and Intelligent Control, Vol.
                337. Springer, Berlin, Germany.
             Azar, A.T., Vaidyanathan, S., Ouannas, A., 2017. Fractional Order Control and Synchronization
                of Chaotic Systems. Vol. 688. Studies inComputational Intelligence. Springer, Berlin,
                Germany.
             Azar, A.T., Kumar, J., Kumar, V., Rana, K.P.S., 2018a. Control of a Two Link Planar
                Electrically-Driven Rigid Robotic Manipulator Using Fractional Order SOFC. Springer
                International Publishing, Cham, pp. 57 68, URL https://doi.org/10.1007/978-3-319-64861-
                3_6.
             Azar, A.T., Ouannas, A., Singh, S., 2018b. Control of New Type of Fractional Chaos
                Synchronization. Springer International Publishing, Cham, pp. 47 56, URL https://doi.org/
                10.1007/978-3-319-64861-3_5.
             Boulkroune, A., Bouzeriba, A., Bouden, T., Azar, A.T., 2016a. Fuzzy adaptive synchronization
                of  uncertain  fractional-order chaotic  systems.  Advances in  Chaos  Theory and
                IntelligentControl. Springer, Berlin, Germany, pp. 681 697.
             Boulkroune, A., Hamel, S., Azar, A.T., Vaidyanathan, S., 2016b. Fuzzy control-based function
                synchronization of unknown chaotic systems with dead-zone input. In: Azar, A.T.,
                Vaidyanathan, S. (Eds.), Advances in Chaos Theory and Intelligent Control. Springer
                International Publishing, Cham, pp. 699 718.
             Cruz-Ancona, C., Martnez-Guerra, R., 2017. Fractional dynamical controllers for generalized
                multi-synchronization of commensurate fractional order liouvillian chaotic systems. J.
                Franklin Institute 354 (7), 3054 3096.
             El-Sayed, A., Nour, H., Elsaid, A., Matouk, A., Elsonbaty, A., 2016. Dynamical behaviors, cir-
                cuit realization, chaos control, and synchronization of a new fractional order hyperchaotic
                system. Appl. Math. Model. 40 (5-6), 3516 3534.
             Gao, W., Li, J., Xu, Y., 2015. Adaptive synchronization of uncertain chaotic systems with defi-
                nite integration scaling function. Optik 126 (19), 1999 2002.
             Ghoudelbourk, S., Dib, D., Omeiri, A., Azar, A.T., 2016. Mppt control in wind energy conver-
                sion systems and the application of fractional control (piα) in pitch wind turbine. Int. J.
                Model. Identif. Control 26 (2), 140 151.
   319   320   321   322   323   324   325   326   327   328   329