Page 327 - Mathematical Techniques of Fractional Order Systems
P. 327
316 Mathematical Techniques of Fractional Order Systems
Soukkou, A., Boukabou, A., Leulmi, S., 2016. Design and optimization of generalized
prediction-based control scheme to stabilize and synchronize fractional-order hyperchaotic
systems. Optik 127 (12), 5070 5077.
Sprott, J., 1994. Some simple chaotic flows. Phys. Rev. E 50, R647 650.
Su, D., Bao, W., Liu, J., Gong, C., 2016. An efficient simulation of the fractional chaotic system
and its synchronization. J. Franklin Institute.
Sun, J., Deng, W., Cui, G., Wang, Y., 2016. Real combination synchronization of three
fractional-order complex-variable chaotic systems. Optik 127 (23), 11460 11468.
Tolba, M.F., AbdelAty, A.M., Saida, L.A., Elwakil, A.S., Azar, A.T., Madian, A.H., et al.,
2017a Fpga realization of caputo and grnwald-letnikov operators. In: 6th International
Conference on Modern Circuits and Systems Technologies (MOCAST). pp. 1 4.
Tolba, M.F., AbdelAty, A.M., Soliman, N.S., Said, L.A., Madian, A.H., Azar, A.T., et al.,
2017b. Fpga implementation of two fractional order chaotic systems. AEU Int. J. Electr.
Communicat. 78 (Suppl. C), 162 172. URL http://www.sciencedirect.com/science/article/
pii/S1434841117303813.
Vaidyanathan, S., Azar, A.T., 2015a. Analysis and control of a 4-d novel hyperchaotic system.
In: Azar, A.T., Vaidyanathan, S. (Eds.), Chaos Modeling and Control Systems Design. Vol.
581 of Studies in Computational Intelligence. Springer, Berlin, Germany, pp. 19 38.
Vaidyanathan, S., Azar, A.T., 2015b. Analysis, control and synchronization of a nine-term 3-d
novel chaotic system. In: Azar, A.T., Vaidyanathan, S. (Eds.), Chaos Modeling and Control
Systems Design. Vol. 581 of Studies in Computational Intelligence. Springer, Berlin,
Germany, pp. 3 17.
Vaidyanathan, S., Azar, A.T., 2015c. Anti-synchronization of identical chaotic systems using
sliding mode control and an application to vaidyanathan-madhavan chaotic systems.
In: Azar, A.T., Zhu, Q. (Eds.), Advances and Applications in Sliding Mode Control
Systems. Vol. 576 of Studies in Computational Intelligence. Springer, Berlin, Germany,
pp. 527 547.
Vaidyanathan, S., Azar, A.T., 2015d. Hybrid synchronization of identical chaotic systems using
sliding mode control and an application to vaidyanathan chaotic systems. In: Azar, A.T.,
Zhu, Q. (Eds.), Advances and Applications in Sliding Mode Control Systems. Vol. 576 of
Studies in Computational Intelligence. Springer, Berlin, Germany, pp. 549 569.
Vaidyanathan, S., Azar, A.T., 2016a. A novel 4-D four-wing chaotic system with four quadratic
nonlinearities and its synchronization via adaptive control method. Advances in Chaos
Theory and IntelligentControl. Springer, Berlin, Germany, pp. 203 224.
Vaidyanathan, S., Azar, A.T., 2016b. Adaptive backstepping control and synchronization of a
novel 3-D jerk system with an exponential nonlinearity. Advances in Chaos Theory and
IntelligentControl. Springer, Berlin, Germany, pp. 249 274.
Vaidyanathan, S., Azar, A.T., 2016c. Adaptive control and synchronization of Halvorsen circu-
lant chaotic systems. Advances in Chaos Theory and IntelligentControl. Springer, Berlin,
Germany, pp. 225 247.
Vaidyanathan, S., Azar, A.T., 2016d. Dynamic analysis, adaptive feedback control and synchro-
nization of an eight-term 3-D novel chaotic system with three quadratic nonlinearities.
Advances in Chaos Theory and IntelligentControl. Springer, Berlin, Germany, pp. 155 178.
Vaidyanathan, S., Azar, A.T., 2016e. Generalized projective synchronization of a novel hyperch-
aotic four-wing system via adaptive control method. Advances in Chaos Theory and
IntelligentControl. Springer, Berlin, Germany, pp. 275 290.
Vaidyanathan, S., Azar, A.T., 2016f. Qualitative study and adaptive control of a novel 4-d
hyperchaotic system with three quadratic nonlinearities. In: Azar, A.T., Vaidyanathan, S.