Page 40 - Mathematical Techniques of Fractional Order Systems
P. 40

30  Mathematical Techniques of Fractional Order Systems


                                         Influence of θ
               120
               100
              Bone mass z(t) [%]  80
                60
                40
                20
                0
                 0        200      400      600       800      1000     1200
               1.05
                                                                    Integer model
                                                                    θ = 4e−08
                1                                                   θ = 6e−08
              α(t) = 1 − θ T(t)  0.95                               θ = 4e−07
                                                                    θ = 8e−08
                                                                    θ = 6e−07
               0.9
                                                                    θ = 8e−07
                                                                    θ = 6e−06
               0.85                                                 θ = 4e−06
                                                                    θ = 8e−06
               0.8
                 0        200      400      600       800      1000     1200
                                         Time t [days]
            FIGURE 1.12 Influence of θ in the evolution of the bone mass according ot the model of
            Eq. (1.27). Parameters were set according to Ayati et al. (2010), and can be found in Table 1.2.
            Results are shown in Fig. 1.13. The extension of this model to incorporate
            cancer treatment is obvious, and so is a further extension to a three-
            dimensional bone (which is, after all, the most realistic situation), which con-
            sists solely in replacing the second order derivative  @ 2 2 with the Laplacian
                                                         @x
              2
            r 5  @ 2 2 1  @ 2 2 1  @ 2 2 .
                 @x   @x   @x
                  1    2    3
                              @ 2
               D αðt;xÞ  Cðt; xÞ 5 σ C  Cðt; xÞ 1 α C Cðt; xÞ g CC  Bðt; xÞ g BC  2 β Cðt; xÞ  ð1:28aÞ
                                                            C
                              @x 2
                              @ 2
                D αðt;xÞ  Bðt; xÞ 5 σ B  Bðt; xÞ 1 α B Cðt; xÞ g CB  Bðt; xÞ g BB  2 β Bðt; xÞ  ð1:28bÞ
                                                            B
                              @x 2
                         @ 2
               1
                                                             ½
                                        ½
              D zðt; xÞ 5 σ z  zðt; xÞ 2 κ C max 0; Cðt; xÞ 2 C SS Š 1 κ B max 0; Bðt; xÞ 2 B SS Š
                         @x 2
                                                                      ð1:28cÞ
                                    @ 2
                         1                                 L T
                        D Tðt; xÞ 5 σ T  2  Tðt; xÞ 1 γ Tðt; xÞlog   ð1:28dÞ
                                               T
                                    @x                   Tðt; xÞ
                                 αðt; xÞ 5 1 2 θ 3 t 3 Tðt; xÞ        ð1:28eÞ
   35   36   37   38   39   40   41   42   43   44   45