Page 437 - Mathematical Techniques of Fractional Order Systems
P. 437

422  Mathematical Techniques of Fractional Order Systems



                                      β
                                     D YðτÞ 5 bXðτÞ;                ð14:38bÞ
            where XðtÞ 5  vðtÞ  ; τ 5  t  ; YðtÞ 5  Ri L ðtÞ  and single membrane conductance is
                        V R    RC m      V R
            defined as:

                                             vðτÞ      vðτÞ
                           σ m 5 f ðvðτÞÞ 5 1 2    1 2      ;        ð14:39Þ
                                             V T       V p
            where V T and V p are the membrane threshold and peak voltages, respectively.
               When synchronizing two coupled neurons, their combined system is
            given by:
                α
               D X 1 ðtÞ 5 X 1 ðtÞðX 1 ðtÞ 2 1Þð1 2 rX 1 ðtÞÞ 2 Y 1 ðtÞ 1 I 0 ðtÞ 2 gðX 1 ðtÞ 2 X 2 ðtÞÞ;
                                                                     ð14:40aÞ
                                      β
                                     D Y 1 ðtÞ 5 bX 1 ðtÞ;          ð14:40bÞ
                α
               D X 2 ðtÞ 5 X 2 ðtÞðX 2 ðtÞ 2 1Þð1 2 rX 2 ðtÞÞ 2 Y 2 ðtÞ 1 I 0 ðtÞ 2 gðX 2 ðtÞ 2 X 1 ðtÞÞ;
                                                                     ð14:40cÞ
                                      β
                                     D Y 2 ðtÞ 5 bX 2 ðtÞ;          ð14:40dÞ
            where g is the control gain, r 5  V p  and I 0 ðtÞ is the external stimulation. The
                                       V T
            dynamical error system is given as:
                   α
                                                2
                                            2


                  D e x 5 ð1 1 rÞðX 1 1 X 2 Þ 2 rðX 1 X 1 X 1 X 2 Þ e x 2 e y ;  ð14:41aÞ
                                           1    2
                                        α
                                       D e y 5 be x :                ð14:69Þ
               The authors also discussed the generalized system of N coupled neurons.
            It can be seen from their simulations that the synchronization is faster as the
            fractional order decreases and also as the control gain g approaches 0:5 the
            synchronization is also faster.
            14.4.3 Sliding Mode Synchronization of Uncertain
            Chaotic Systems
            Synchronization of a FOCS which involves model uncertainty is a rather dif-
            ficult task. Hosseinnia et al. (2010) discussed this issue with an example on
            the Duffing Holmes system. The master system is given as:
                                         q
                                        D x 1 5 x 2 ;                ð14:42aÞ
                                               3
                                q
                               D x 2 5 x 1 2 αx 2 2 x 1 βcosðtÞ;    ð14:42bÞ
                                               1
            while the slave system is given by:
                                         q
                                        D y 1 5 y 2 ;                ð14:43aÞ
   432   433   434   435   436   437   438   439   440   441   442