Page 497 - Mathematical Techniques of Fractional Order Systems
P. 497

484  Mathematical Techniques of Fractional Order Systems


                          1.1
                           1

                          0.9
                          0.8
                         x
                          0.7
                          0.6

                          0.5
                          0.4
                           0.05     0.1     0.15     0.2     0.25
                                             a
            FIGURE 16.10 Bifurcation diagram of system infinite equilibria (16.10) for b 5 0:1, c 5 1, and
            initial conditions ðxð0Þ; yð0Þ; zð0ÞÞ 5 ð0:1; 0:1; 0:1Þ when changing the value of the parameter a
            from 0.05 to 0.25.

                          1.2

                           1


                          0.8
                         x
                          0.6

                          0.4

                          0.2
                           0.05     0.1     0.15     0.2     0.25
                                             a
            FIGURE 16.11 Bifurcation diagram of system infinite equilibria (16.10) for b 5 0:1, c 5 1, and
            initial conditions ðxð0Þ; yð0Þ; zð0ÞÞ 5 ð2 0:1; 0:1; 0:1Þ when changing the value of the parameter a
            from 0.05 to 0.25.

            2001; Yanchuk et al., 2001; Mosekilde et al., 2002). Especially, after the
            study of Pecora and Carrol about synchronization in chaotic systems (Pecora
            and Carroll, 1990), a great deal of work related to chaos synchronization has
            attracted the interest of the research community (Vaidyanathan and Pehlivan,
            2012; Zhao et al., 2011; Jeong et al., 2013; Yang, 2013; Trejo-Guerra et al.,
            2013; Pai, 2014). The possibility of the synchronization of chaotic systems
            plays a vital role in practical applications (Boccaletti et al., 2002; Fortuna
            and Frasca, 2007; Abdullah, 2013; Sun et al., 2015; Banerjee, 2010;
            Mata-Machuca et al., 2012; Volos et al., 2013; Aguilar-Lopez et al., 2014;
   492   493   494   495   496   497   498   499   500   501   502