Page 499 - Mathematical Techniques of Fractional Order Systems
P. 499

486  Mathematical Techniques of Fractional Order Systems


               The state errors of the antisynchronization are defined by
                                        e x 5 x 2 1 x 1 ;
                                     8
                                     >
                                     <
                                        e y 5 y 2 1 y 1 ;            ð16:16Þ
                                     >
                                        e z 5 z 2 1 z 1 :
                                     :
               It is trivial to see that the state error dynamics of the antisynchronization
            are given by:
                                        _ e x 5 _ x 2 1 _ x 1 ;
                                     8
                                     >
                                     <
                                        _ e y 5 _ y 1 _ y ;          ð16:17Þ
                                            2
                                                1
                                     >
                                        _ e z 5 _z 2 1 _z 1 :
                                     :
               By taking the difference between the unknown system parameters (a, b,
                                                        ^
            c) and the estimation of the unknown parameters (^ a, b, ^ c), the parameter esti-
            mation errors are calculated as:
                                      8
                                        e a 5 a 2 ^ a;
                                      >
                                      <
                                                ^
                                        e b 5 b 2 b;                 ð16:18Þ
                                      >
                                        e c 5 c 2 ^ c;
                                      :
               Similarly, we get the parameter estimation error dynamics by differentiat-
            ing Eq. (16.18). Thus the parameter estimation error dynamics are:
                                       8       _
                                         _ e a 52 ^ a;
                                       <
                                               _
                                               ^
                                         _ e b 52 b;                 ð16:19Þ
                                         _ e c 52 ^ c;
                                       :       _
               The main aim of this section is to design an adaptive control to antisyn-
            chronize the slave no-equilibrium system (16.15) and the master no-
            equilibrium system (16.14). Therefore, the adaptive control has been
            constructed as follows:
                 8
                   u x 5 e z 2 k x e x
                 >
                 <
                            2    2
                   u y 52 x 1 z 2 x 2 z 2 ^ aðsgnðz 1 Þ 1 sgnðz 2 ÞÞ 2 k y e y  ð16:20Þ
                            1    2
                 >
                 :           ^  y 1  y 2   2    2     3   3
                   u z 52 e x 1 bðe 1 e Þ 2 ^ cðy z 1 1 y z 2 Þ 1 z 1 z 2 k z e z
                                           1    2     1   2
               It is noted that in (16.20), three positive gain constants are k x , k y , k z .In
            addition, we have designed the following parameter update law:
                                   _
                                 8
                                   ^ a 5 ðsgnðz 1 Þ 1 sgnðz 2 ÞÞe y
                                 >
                                 >
                                 <
                                   ^ _    y 1  y 2
                                   b 52 ðe 1 e Þe z                  ð16:21Þ
                                 >
                                   _    2    2
                                 >
                                 :
                                   ^ c 5 ðy z 1 1 y z 2 Þe z
                                        1    2
   494   495   496   497   498   499   500   501   502   503   504