Page 504 - Mathematical Techniques of Fractional Order Systems
P. 504

Dynamics, Synchronization and Fractional Order Form Chapter | 16  491


                Here the predicted variables are given by:
               8                     n
                                 1  X
                 x ðt n11 Þ 5 xð0Þ 1
               >  ðpÞ                  β
               >                            ð2 zðt j ÞÞ
               >                        j;n11
               >
                                ΓðqÞ
                                    j50
               >
               >
               >
               >                     n
               >
               <                 1  X               2
                 y ðt n11 Þ 5 yð0Þ 1   β j;n11 ðxðt j Þðzðt j ÞÞ 1 asgnðzðt j ÞÞÞ
                  ðpÞ
                                ΓðqÞ
               >                    j50
               >
               >
                                 1  X
               >                     n
               >
                 z ðt n11 Þ 5 zð0Þ 1
               >                                              2         3
               >  ðpÞ                  β           yðt j Þ
               >                        j;n11 ðxðt j Þ 2 be  1 cðyðt j ÞÞ zðt j Þ 2 ðzðt j ÞÞ Þ
               >
                                ΓðqÞ
               :
                                    j50
                                                                      ð16:35Þ
                It is noted that in (16.35), α j;n11 and β  are described as follows
                                               j;n11
                       8  q11            q
                         n   2 ðn 2 qÞðn11Þ                 j 5 0
                       >
                       <
                α j;n11 5  ðn2j12Þ q11  1 ðn2jÞ q11  2 2ðn2j11Þ q11  1 # j # n  ð16:36Þ
                       >
                       :
                         1                                  j 5 n 1 1
             and
                                  h q
                          β j;n11  5  ððn112jÞ 2 ðn2jÞ Þ  0 # j # n
                                            q
                                                    q
                                  q                                   ð16:37Þ
                It is interesting that for q 5 0:99, fractional order system (16.33) gener-
             ates chaotic behavior as shown Fig. 16.15. In order to verify the chaoticity
             of fractional order system infinite equilibria (16.33), its largest Lyapunov
             exponent has been calculated by applying the practical method in
             (Rosenstein et al., 1993). The largest Lyapunov exponent of the fractional
             order system (16.33) for q 5 0:99 is 0.1298.
                Previous research has established that the “0 1” test is an efficient test
             for confirming chaos. Gottwald and Melbourne (Gottwald and Melbourne,
             2004, 2009) have introduced and developed the “0 1” test, in which
             Gottwald and Melbourne constructed a random walk-type process from the
             data and investigated the variance of the random walk scales with time
             (Cafagna and Grassi, 2008; Gottwald and Melbourne, 2009). Thus, the test is
             useful and has advantages, for example, the test does not require phase space
             reconstruction (Cafagna and Grassi, 2008; Gottwald and Melbourne, 2009).
             We have also used the “0 1” test to confirm the chaos of fractional order
             system (16.33) with infinite equilibria for q 5 0:99.
                For implementing the test, a discrete map φ nðÞ from the fractional order sys-
             tem has been considered. Two functions pnðÞ, qnðÞ are defined in the following
             forms:
                                          n
                                         X
                                   pðnÞ 5   φðjÞcosðθðjÞÞ             ð16:38Þ
                                         j51
             and
                                          n
                                         X
                                   qðnÞ 5   φðjÞsinðθðjÞÞ             ð16:39Þ
                                         j51
   499   500   501   502   503   504   505   506   507   508   509