Page 509 - Mathematical Techniques of Fractional Order Systems
P. 509
496 Mathematical Techniques of Fractional Order Systems
Gotthans, T., Petrˇ zela, J., 2015. New class of chaotic systems with circular equilibrium.
Nonlinear Dyns. 81 (3), 1143 1149.
Gotthans, T., Sportt, J.C., Petrˇ zela, J., 2016. Simple chaotic flow with circle and square equilib-
rium. Int. J. Bifurcation and Chaos 26 (8), 1650137.
Gottwald, G.A., Melbourne, I., 2004. A new test for chaos in deterministic systems. Proc R. Soc.
London A: Math. Phys. Eng. Sci. 460, 603 611.
Gottwald, G.A., Melbourne, I., 2009. On the implementation of the 0 1 test for chaos. SIAM J.
Appl. Dyn. Syst. 8, 129 145.
Grassi, G., Ouannas, A., Azar, A.T., Radwan, A.G., Volos, C., Pham, V.-T., et al., 2017. Chaos
synchronisation of continuous systems via scalar signal. In: 6th International Conference on
Modern Circuits and Systems Technologies (MOCAST). pp. 1 4.
Heaviside, O., 1971. Electromagnetic Theory. Academic Press, New York, USA.
Hens, C., Dana, S.K., Feudel, U., 2015. Extreme multistability: attractors manipulation and
robustness. Chaos 25 (5), 053112.
Hifer, R., 2001. Applications of Fractional Calculus in Physics. World Scientific, Singapore.
Holstein-Rathlou, N.H., Yip, K.P., Sosnovtseva, O.V., Mosekilde, E., 2001. Synchronization
phenomena in nephron nephron interaction. Physica D 1q 417 426.
Jafari, S., Sprott, J.C., 2013. Simple chaotic flows with a line equilibrium. Chaos Solitons
Fractals 57, 79 84.
Jafari, S., Sprott, J., Golpayegani, S.M.R.H., 2013. Elementary quadratic chaotic flows with no
equilibria. Phys. Lett. A 377, 699 702.
Jenson, V.G., Jeffreys, G.V., 1997. Mathematical Methods in Chemical Enginerring. Academic
Press, New York, USA.
Jeong, S.C., Ji, D.H., Park, J.H., Won, S.C., 2013. Adaptive synchronization for uncertain cha-
otic neural networks with mixed time delays using fuzzy disturbance observer. Appl. Math.
Comput. 219, 5984 5995.
Kengne, J., 2015. Coexistence of chaos with hyperchaos, period?-3 doubling bifurcation, and tran-
sient chaos in the hyperchaotic oscillator with gyrators. Int. J. Bifurcat. Chaos 25 (4), 1550052.
Kengne, J., Chedjou, J.C., Fozin, T.F., Kyamakya, K., Kenne, G., 2014a. On the analysis of
semiconductor diode based chaotic and hyperchaotic chaotic generators a case study.
Nonlinear Dyn. 77, 373 386.
Kengne, J., Chedjou, J.C., Kom, M., Kyamakya, K., Tamba, V.K., 2014b. Regular oscillations,
chaos, and multistability in a system of two coupled van der pol oscillators: numerical and
experimental studies. Nonlinear Dyn. 76, 1119 1132.
Kengne, J., Njitacke, Z.T., Fotsin, H.B., 2014c. Dynamical analysis of a simple autonomous jerk
system with multiple attractors. Nonlinear Dyn. 83 (1 2), 751 765.
Khalil, H.K., 2002. Nonlinear Systems, third ed. Prentice Hall, New Jersey, USA.
Lamamra, K., Vaidyanathan, S., Azar, A.T., Ben Salah, C., 2017. Chaotic system modelling
using a neural network with optimized structure. In: Azar, A.T., Vaidyanathan, S., Ouannas,
A. (Eds.), Fractional Order Control and Synchronization of Chaotic Systems. Springer
International Publishing, Cham, pp. 833 856.
Leipnik, R.B., Newton, T.A., 1981. Double strange attractors in rigid body motion with linear
feedback control. Phys. Lett. A 86, 63 87.
Li, C., Peng, G., 2004. Chaos in Chen’s system with a fractional order. Chaos Solitons Fractals
22, 443 450.
Li, C., Sprott, J.C., 2014a. Chaotic flows with a single nonquadratic term. Phys. Lett. A 378 (3),
178 183.

