Page 511 - Mathematical Techniques of Fractional Order Systems
P. 511
498 Mathematical Techniques of Fractional Order Systems
Munmuangsaen, B., Sprott, J.C., Thio, W.J.-C., Buscarino, A., Fortuna, L., 2015. A simple cha-
otic flow with a continuously adjustable attractor dimension. Int. J. Bifurcation Chaos 25
(12), 1530036.
Muthukumar, P., Balasubramaniam, P., 2013. Feedback synchronization of the fractional order
reverse butterfly shaped chaotic system and its application to digital cryptography.
Nonlinear Dyn. 74, 1169 1181.
Muthukumar, P., Balasubramaniam, P., Ratnavelu, K., 2014a. Fast projective synchronization of
fractional order chaotic and reverse chaotic systems with its application to an affine cipher
using date of birth (DOB). Nonlinear Dyn. 80, 1883 1897.
Muthukumar, P., Balasubramaniam, P., Ratnavelu, K., 2014b. Synchronization of a novel frac-
tional order stretch twist fold (STF) flow chaotic system and its application to a new
authenticated encryption scheme (AES). Nonlinear Dyn. 77, 1547 1559.
Ouannas, A., Azar, A.T., Vaidyanathan, S., 2007. A robust method for new fractional hybrid
chaos synchronization. Math. Meth. Appl. Sci. 40, 1804 1812.
Ouannas, A., Azar, A.T., Radwan, A.G., Dec 2016. On inverse problem of generalized synchro-
nization between different dimensional integer-order and fractional-order chaotic systems.
In: 2016 28th International Conference on Microelectronics (ICM). pp. 193 196.
Ouannas, A., Azar, A.T., Vaidyanathan, S., 2017a. New hybrid synchronization schemes based
on coexistence of various types of synchronization between master-slave hyperchaotic sys-
tems. Int. J. Computer Applicat. Technol. 55 (2), 112 120.
Ouannas, A., Azar, A.T., Vaidyanathan, S., 2017b. On a simple approach for q-s synchronization
of chaotic dynamical systems in continuous-time. Int. J. Computing Sci. Math. 8 (1), 20 27.
Ouannas, A., Azar, A.T., Ziar, T., 2017c. On inverse full state hybrid function projective syn-
chronization for continuous-time chaotic dynamical systems with arbitrary dimensions.
Different. Eq. Dyn. Syst. Available from: https://doi.org/10.1007/s12591-017-0362-x.
Ouannas, A., Azar, A.T., Ziar, T., Radwan, A.G., 2017d. Generalized synchronization of differ-
ent dimensional integer-order and fractional order chaotic systems. In: Azar, A.T.,
Vaidyanathan, S., Ouannas, A. (Eds.), Fractional Order Control and Synchronization of
Chaotic Systems. Springer International Publishing, Cham, pp. 671 697.
Ouannas, A., Azar, A.T., Ziar, T., Radwan, A.G., 2017e. A study on coexistence of different
types of synchronization between different dimensional fractional chaotic systems. In: Azar,
A.T., Vaidyanathan, S., Ouannas, A. (Eds.), Fractional Order Control and Synchronization
of Chaotic Systems. Springer International Publishing, Cham, pp. 637 669.
Ouannas, A., Azar, A.T., Ziar, T., Vaidyanathan, S., 2017f. Fractional inverse generalized chaos
synchronization between different dimensional systems. In: Azar, A.T., Vaidyanathan, S.,
Ouannas, A. (Eds.), Fractional Order Control and Synchronization of Chaotic Systems.
Springer International Publishing, Cham, pp. 525 551.
Ouannas, A., Azar, A.T., Ziar, T., Vaidyanathan, S., 2017g. A new method to synchronize frac-
tional chaotic systems with different dimensions. In: Azar, A.T., Vaidyanathan, S., Ouannas,
A. (Eds.), Fractional Order Control and Synchronization of Chaotic Systems. Springer
International Publishing, Cham, pp. 581 611.
Ouannas, A., Azar, A.T., Ziar, T., Vaidyanathan, S., 2017h. On new fractional inverse matrix
projective synchronization schemes. In: Azar, A.T., Vaidyanathan, S., Ouannas, A. (Eds.),
Fractional Order Control and Synchronization of Chaotic Systems. Springer International
Publishing, Cham, pp. 497 524.
Ouannas, A., Grassi, G., Azar, A.T., Radwan, A.G., Volos, C., Pham, V.-T., et al., 2017i. Dead-
beat synchronization control in discrete-time chaotic systems. In: 6th International
Conference on Modern Circuits and Systems Technologies (MOCAST), pp. 1 4.

