Page 514 - Mathematical Techniques of Fractional Order Systems
P. 514
Dynamics, Synchronization and Fractional Order Form Chapter | 16 501
Vaidyanathan, S., Azar, A.T., 2016g. Takagi-Sugeno fuzzy logic controller for Liu-Chen four-
scroll chaotic system. International Journal of Intelligent Engineering Informatics 4 (2),
135 150.
Vaidyanathan, S., Pehlivan, I., 2012. Analysis, control, synchronization, and circuit design of a
novel chaotic system. Math. Comp. Modelling 55, 1904 1915.
Vaidyanathan, S., Azar, A.T., Ouannas, A., 2017a. An eight-term 3-d novel chaotic system with
three quadratic nonlinearities, its adaptive feedback control and synchronization. In: Azar,
A.T., Vaidyanathan, S., Ouannas, A. (Eds.), Fractional Order Control and Synchronization
of Chaotic Systems. Springer International Publishing, Cham, pp. 719 746.
Vaidyanathan, S., Azar, A.T., Ouannas, A., 2017b. Hyperchaos and adaptive control of a novel
hyperchaotic system with two quadratic nonlinearities. In: Azar, A.T., Vaidyanathan, S.,
Ouannas, A. (Eds.), Fractional Order Control and Synchronization of Chaotic Systems.
Springer International Publishing, Cham, pp. 773 803.
Vaidyanathan, S., Zhu, Q., Azar, A.T., 2017c. Adaptive control of a novel nonlinear double con-
vection chaotic system. In: Azar, A.T., Vaidyanathan, S., Ouannas, A. (Eds.), Fractional
Order Control and Synchronization of Chaotic Systems. Springer International Publishing,
Cham, pp. 357 385.
Vaidyanathan, S., Azar, A.T., Rajagopal, K., Alexander, P., 2015a. Design and spice implemen-
tation of a 12-term novel hyperchaotic system and its synchronisation via active control. Int.
J. Model. Identif. Control 23 (3), 267 277.
Vaidyanathan, S., Idowu, B.A., Azar, A.T., 2015b. Backstepping controller design for the global
chaos synchronization of sprott’s jerk systems. In: Azar, A.T., Vaidyanathan, S. (Eds.),
Chaos Modeling and Control Systems Design. Vol. 581 of Studies in Computational
Intelligence. Springer, Berlin, Germany, pp. 39 58.
Vaidyanathan, S., Sampath, S., Azar, A.T., 2015c. Global chaos synchronisation of identical cha-
otic systems via novel sliding mode control method and its application to zhu system. Int. J.
Model. Identif. Control 23 (1), 92 100.
Vaithianathan, V., Veijun, J., 1999. Coexistence of four different attractors in a fundamental
power system model. IEEE Trans. Circuits Syst. I 46, 405 409.
Valli, D., Muthuswamy, B., Banerjee, S., Ariffin, M.R.K., Wahad, A.W.A., Ganesan, K., et al.,
2014. Synchronization in coupled ikeda delay systems experimental observations using field
programmable gate arrays. Eur. Phys. J. Special Topics 223, 1465 1479.
Volos, C.K., Kyprianidis, I.M., Stouboulos, I.N., 2012. A chaotic path planning generator for
autonomous mobile robots. Robot. Auto. Systems 60, 651 656.
Volos, C.K., Kyprianidis, I.M., Stouboulos, I.N., 2013. Image encryption process based on cha-
otic synchronization phenomena. Signal Processing 93, 1328 1340.
Wang, X., Chen, G., 2012. A chaotic system with only one stable equilibrium. Commun.
Nonlinear Sci. Numer. Simul. 17, 1264 1272.
Wang, X., Chen, G., 2013. Constructing a chaotic system with any number of equilibria.
Nonlinear Dyn. 71, 429 436.
Wang, Z., Chen, S., Ochola, E.O., Sun, Y., 2012. A hyperchaotic system without equilibrium.
Nonlinear Dyn. 69, 531 537.
Wang, Z., Volos, C., Kingni, S.T., Azar, A.T., Pham, V.-T., 2017. Four wing attractors in a
novel chaotic system with hyperbolic sine nonlinearity. Optik 131 (2017), 1071 1078.
Westerlund, S., Ekstam, L., 1994. Capacitor theory. IEEE Trans. Dielectr. Electr. Insul. 1,
826 839.
Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A., 1985. Determining Lyapunov exponents
from a time series. Phys. D 16, 285 317.

