Page 519 - Mathematical Techniques of Fractional Order Systems
P. 519

506  Mathematical Techniques of Fractional Order Systems


            method for solving a wide range of problems whose mathematical models
            involve algebraic, differential, biological models and chaotic systems. The
            definition of Gru ¨nwald Letnikov derivative has been used in numerical
            analysis to discretize the fractional differential equations. The technique has
            many advantages over the classical techniques, and provides an efficient
            numerical solution.
               The Caputo fractional derivative (Gorenflo and Mainardi, 1997) of order
            α is defined as:
                           α
                          d fðtÞ
                   α
                  D fðtÞ 5
                           dt α
                         8          ð t  m
                               1        f ðτÞ
                         >                      dτ
                         >                          m 2 1 , α , m
                         >                 α2m11                      ð17:1Þ
                         >  Γðm 2 αÞ
                         <           0 ðt2τÞ
                       5                                        ;
                            d m
                         >
                         >
                         >     fðtÞ                 α 5 m
                         >   m
                         :  dt
            where m is the first integer greater than α and Γð:Þ is the gamma function
            defined by:
                                 ð N
                                     2t z21
                           ΓðzÞ 5   e t   dt;  Γðz 1 1Þ 5 zΓðzÞ:      ð17:2Þ
                                  0
               Consider the fractional order differential equation
                                       α
                                     D xðtÞ 5 fðt; xÞ:                ð17:3Þ
               Gru ¨nwald Letnikov method of approximation (Hussian et al., 2008)is
            defined as follows:
                                          t=h
                            α          2α  X    j α
                           D xðtÞ 5 lim h    ð21Þ     xðt 2 jhÞ;      ð17:4Þ
                                   h-0            j
                                          j50
            where h is the step size. This equation can be discretized as follows:
                          n11
                          X   α
                             c xðt 2 jhÞ 5 fðt n ; xðt n ÞÞ;  j 5 1; 2; 3; ...  ð17:5Þ
                              j
                          j50
                            α
            where t n 5 nh and c are the Gru ¨nwald Letnikov coefficients defined as:
                            j
                                1 1 α
                       α
                                                          α
                      c 5 1 2         c α  ;  j 5 1; 2; 3; ...;  c 5 h 2α :  ð17:6Þ
                       j               j21                0
                                  j
               The NSFD discretization technique is based on replacing the step size h
            by a function φðhÞ (Hussian et al., 2008; Moaddy et al., 2012) and applying
            it with (17.5) to solve (17.3).
   514   515   516   517   518   519   520   521   522   523   524