Page 515 - Mathematical Techniques of Fractional Order Systems
P. 515

502  Mathematical Techniques of Fractional Order Systems


            Wu, J., Wang, L., Chen, G., Duan, S., 2016. A memristive chaotic system with heart shaped
               attractors and its implementation. Chaos Solitons Fractals 92 (2016), 20 29.
            Wu, R., Wang, C., 2016. A new simple chaotic circuit based on memristor. Int. J. Bifurcation
               Chaos 26 (9), 1650145.
            Xu, Y., Wang, H., Li, Y., Pei, B., 2014. Image encryption based on synchronization of fractional
               chaotic systems. Commun. Nonlinear Sci. Numer. Simul. 19, 3735 3744.
            Yalcin, M.E., Suykens, J.A.K., Vandewalle, J., 2004. True random bit generation from a double-
                scroll attractor. IEEE Trans. Circuits Syst. I, Regular Papers 51, 1395 1404.
            Yanchuk, S., Maistrenko, Y., Mosekilde, E., 2001. Loss of synchronization in coupled ro ¨ssler
               systems. Phys. D 154, 26 42.
            Yang, C.-C., 2013. One input control of exponential synchronization for a four dimensional
               chaotic system. Appl. Math. Comput. 219, 5152 5161.
            Yu, S., Tang, W.K.S., Lu, J., Chen, G., 2010. Design and implementation of multi wing butter-
               fly chaotic attractors via Lorenz type systems. Int. J. Bifurcation Chaos 20, 29 41.
            Zeng, Z., Zheng, W., 2012. Multistability of neural networks with time varying delays and con-
               cave convex characteristic. IEEE Trans. Neural Netw. Learn. Syst. 23, 293 305.
            Zeng, Z., Huang, T., Zheng, W., 2010. Multistability of recurrent networks with time varying
               delays and the piecewise linear activation function. IEEE Trans. Neural Netw. 21,
               1371 1377.
            Zhao, X., Li, Z., Li, S., 2011. Synchronization of a chaotic finance system. Appl. Math. Comput.
               217, 6031 6039.
            Zhou, P., Yang, F., 2014. Hyperchaos, chaos, and horseshoe in a 4D nonlinear system with an
               infinite number of equilibrium points. Nonlinear Dyn. 76, 473 480.
            Zhu, Q., Azar, A.T., 2015. Complex System Modelling and Control Through Intelligent Soft
               Computations. Vol. 319. Studies in Fuzziness and Soft Computing, Berlin, Germany.
   510   511   512   513   514   515   516   517   518   519   520