Page 512 - Mathematical Techniques of Fractional Order Systems
P. 512
Dynamics, Synchronization and Fractional Order Form Chapter | 16 499
Pai, M.-C., 2014. Global synchronization of uncertain chaotic systems via discrete time sliding
mode control. Appl. Math. Comput. 227, 663 671.
Pecora, L., Carroll, T.L., 1990. Synchronization in chaotic systems. Phys. Rev. Lett. 64,
821 824.
Petras, I., 2011. Fractional-Order Nonlinear Systems, Modeling, Analysis and Simulation.
Higher Education Press and Springer, Beijing and Berlin.
Pham, V.-T., Jafari, S., Volos, C., Giakoumis, A., Vaidyanathan, S., Kapitaniak, T., 2016a. A
chaotic system with equilibria located on the rounded square loop and its circuit implemen-
tation. IEEE Trans. Circuits Syst.-II: Express Briefs 63 (9), 878 882.
Pham, V.-T., Jafari, S., Volos, C., Vaidyanathan, S., Kapitaniak, T., 2016b. A chaotic system
with infinite equilibria located on a piecewise linear curve. Optik 127 (20), 9111 9117.
Pham, V.T., Jafari, S., Wang, X., Ma, J., 2016c. A chaotic system with different shapes of equi-
libria. Int. J. Bifurcation Chaos 26 (4), 1650069.
Pham, V.-T., Volos, C., Jafari, S., Vaidyanathan, S., Kapitaniak, T., Wang, X., 2016d. A chaotic
systems with different families of hidden attractors. Int. J. Bifurcation Chaos 25 (8), 1650139.
Pham, V.-T., Vaidyanathan, S., Volos, C.K., Azar, A.T., Hoang, T.M., Van Yem, V., 2017a. A
three-dimensional no-equilibrium chaotic system: analysis, synchronization and its fractional
order form. In: Azar, A.T., Vaidyanathan, S., Ouannas, A. (Eds.), Fractional Order Control and
Synchronization of Chaotic Systems. Springer International Publishing, Cham, pp. 449 470.
Pham, V.-T., Vaidyanathan, S., Volos, C.K., Jafari, S., Gotthans, T., 2017b. A Three-
Dimensional Chaotic System with Square Equilibrium and No-Equilibrium. Springer
International Publishing, Cham, pp. 613 635. Available from: https://doi.org/10.1007/978-
3-319-50249-6_21.
Pham, V.-T., Volos, C., Kapitaniak, T., 2017c. Systems with Hidden Attractors: From Theory to
Realization in Circuits. Springer, Germany.
Piper, J.R., Sprott, J.C., 2010. Simple autonomous chaotic circuits. IEEE Trans. Circuits Syst.-II:
Express Briefs 57, 730 734.
Pivka, L., Wu, C.W., Huang, A., 1994. Chua’s oscillator: a compendium of chaotic phenomena.
J. Frankl. Inst. 331, 705 741.
Podlubny, I., 1999. Fractional Differential Equations. Academic Press, New York.
Rosenstein, M.T., Collins, J.J., Luca, C.J.D., 1993. A practical method for calculating largest
Lyapunov exponents from small data sets. Physica D 65, 117.
Ro ¨ssler, O.E., 1976. An equation for continuous chaos. Phys. Lett. A 57, 397 398.
Shilnikov, L., Shilnikov, A., Turaev, D., Chua, L., 1998. Methods of Qualitative Theory in
Nonlinear Dynamics. World Scientific, Singapore.
Shilnikov, L.P., 1965. A case of the existence of a countable number of periodic motions. Sov.
Math. Docklady 6, 163 166.
Singh, S., Azar, A.T., Ouannas, A., Zhu, Q., Zhang, W., Na, J., 2017. Sliding mode control tech-
nique for multi-switching synchronization of chaotic systems. In: 9th International
Conference on Modelling, Identification and Control (ICMIC 2017), July 10 12, 2017,
Kunming, China.
Soliman, N.S., Said, L.A., Azar, A.T., Madian, A.H., Radwan, A.G., Ounnas, A., 2017. Fractional
controllable multi-scroll v-shape attractor with parameters effect. In: 6th International
Conference on Modern Circuits and Systems Technologies (MOCAST), pp. 1 4.
Sprott, J., 1994. Some simple chaotic flows. Phys. Rev. E 50, R647 650.
Sprott, J.C., 2003. Chaos and Times Series Analysis. Oxford University Press, Oxford.
Sprott, J.C., 2010. Elegant Chaos Algebraically Simple Chaotic Flows. World Scientific,
Singapore.

