Page 512 - Mathematical Techniques of Fractional Order Systems
P. 512

Dynamics, Synchronization and Fractional Order Form Chapter | 16  499


             Pai, M.-C., 2014. Global synchronization of uncertain chaotic systems via discrete time sliding
                mode control. Appl. Math. Comput. 227, 663 671.
             Pecora, L., Carroll, T.L., 1990. Synchronization in chaotic systems. Phys. Rev. Lett. 64,
                821 824.
             Petras, I., 2011. Fractional-Order Nonlinear Systems, Modeling, Analysis and Simulation.
                Higher Education Press and Springer, Beijing and Berlin.
             Pham, V.-T., Jafari, S., Volos, C., Giakoumis, A., Vaidyanathan, S., Kapitaniak, T., 2016a. A
                chaotic system with equilibria located on the rounded square loop and its circuit implemen-
                tation. IEEE Trans. Circuits Syst.-II: Express Briefs 63 (9), 878 882.
             Pham, V.-T., Jafari, S., Volos, C., Vaidyanathan, S., Kapitaniak, T., 2016b. A chaotic system
                with infinite equilibria located on a piecewise linear curve. Optik 127 (20), 9111 9117.
             Pham, V.T., Jafari, S., Wang, X., Ma, J., 2016c. A chaotic system with different shapes of equi-
                libria. Int. J. Bifurcation Chaos 26 (4), 1650069.
             Pham, V.-T., Volos, C., Jafari, S., Vaidyanathan, S., Kapitaniak, T., Wang, X., 2016d. A chaotic
                systems with different families of hidden attractors. Int. J. Bifurcation Chaos 25 (8), 1650139.
             Pham, V.-T., Vaidyanathan, S., Volos, C.K., Azar, A.T., Hoang, T.M., Van Yem, V., 2017a. A
                three-dimensional no-equilibrium chaotic system: analysis, synchronization and its fractional
                order form. In: Azar, A.T., Vaidyanathan, S., Ouannas, A. (Eds.), Fractional Order Control and
                Synchronization of Chaotic Systems. Springer International Publishing, Cham, pp. 449 470.
             Pham, V.-T., Vaidyanathan, S., Volos, C.K., Jafari, S., Gotthans, T., 2017b. A Three-
                Dimensional Chaotic System with Square Equilibrium and No-Equilibrium. Springer
                International Publishing, Cham, pp. 613 635. Available from: https://doi.org/10.1007/978-
                3-319-50249-6_21.
             Pham, V.-T., Volos, C., Kapitaniak, T., 2017c. Systems with Hidden Attractors: From Theory to
                Realization in Circuits. Springer, Germany.
             Piper, J.R., Sprott, J.C., 2010. Simple autonomous chaotic circuits. IEEE Trans. Circuits Syst.-II:
                Express Briefs 57, 730 734.
             Pivka, L., Wu, C.W., Huang, A., 1994. Chua’s oscillator: a compendium of chaotic phenomena.
                J. Frankl. Inst. 331, 705 741.
             Podlubny, I., 1999. Fractional Differential Equations. Academic Press, New York.
             Rosenstein, M.T., Collins, J.J., Luca, C.J.D., 1993. A practical method for calculating largest
                Lyapunov exponents from small data sets. Physica D 65, 117.
             Ro ¨ssler, O.E., 1976. An equation for continuous chaos. Phys. Lett. A 57, 397 398.
             Shilnikov, L., Shilnikov, A., Turaev, D., Chua, L., 1998. Methods of Qualitative Theory in
                Nonlinear Dynamics. World Scientific, Singapore.
             Shilnikov, L.P., 1965. A case of the existence of a countable number of periodic motions. Sov.
                Math. Docklady 6, 163 166.
             Singh, S., Azar, A.T., Ouannas, A., Zhu, Q., Zhang, W., Na, J., 2017. Sliding mode control tech-
                nique for multi-switching synchronization of chaotic systems. In: 9th International
                Conference on Modelling, Identification and Control (ICMIC 2017), July 10 12, 2017,
                Kunming, China.
             Soliman, N.S., Said, L.A., Azar, A.T., Madian, A.H., Radwan, A.G., Ounnas, A., 2017. Fractional
                controllable multi-scroll v-shape attractor with parameters effect. In: 6th International
                Conference on Modern Circuits and Systems Technologies (MOCAST), pp. 1 4.
             Sprott, J., 1994. Some simple chaotic flows. Phys. Rev. E 50, R647 650.
             Sprott, J.C., 2003. Chaos and Times Series Analysis. Oxford University Press, Oxford.
             Sprott, J.C., 2010. Elegant Chaos Algebraically Simple Chaotic Flows. World Scientific,
                Singapore.
   507   508   509   510   511   512   513   514   515   516   517