Page 508 - Mathematical Techniques of Fractional Order Systems
P. 508

Dynamics, Synchronization and Fractional Order Form Chapter | 16  495


             Bagley, R.L., Calico, R.A., 1991. Fractional order state equations for the control of visco elasti-
                cally damped structers. J. Guide Conteol Dyn. 14, 304 311.
             Banerjee, S., 2010. Chaos Synchronization and Cryptography for Secure Communication. IGI
                Global, USA.
             Barati, K., Jafari, S., Sprott, J.C., Pham, V.-T., 2016. Simple chaotic flows with a curve of equi-
                libria. Int. J. Bifurcation Chaos 26 (12), 1630034.
             Boccaletti, S., Kurths, J., Osipov, G., Valladares, D.L., Zhou, C.S., 2002. The synchronization of
                chaotic systems. Phys. Rep. 366, 1 101.
             Boulkroune, A., Bouzeriba, A., Bouden, T., Azar, A.T., 2016a. Fuzzy adaptive synchronization
                of uncertain fractional-order chaotic systems. Advances in Chaos Theory and Intelligent
                Control. Springer, Berlin, Germany, pp. 681 697.
             Boulkroune, A., Hamel, S., Azar, A.T., Vaidyanathan, S., 2016b. Fuzzy control-based function
                synchronization of unknown chaotic systems with dead-zone input. In: Azar, A.T.,
                Vaidyanathan, S. (Eds.), Advances in Chaos Theory and Intelligent Control. Springer
                International Publishing, Cham, pp. 699 718.
             Cafagna, D., Grassi, G., 2008. Fractional order Chua’s circuit: time domain analysis,
                bifurcation, chaotic behaviour and test for chaos. Int. J. Bifurcation Chaos 18, 615 639.
             Chen, G., Yu, X., 2003. Chaos Control: Theory and Applications. Springer, Berlin.
             Chen, G.R., Ueta, T., 1999. Yet another chaotic attractor. Int. J. Bifurcation and Chaos 9,
                1465 1466.
             Chen, Y., Yang, Q., 2015. A new Lorenz type hyperchaotic system with a curve of equilibria.
                Math. Comput. Simul. 112 (2015), 40 55.
             Cicek, S., Ferikoglu, A., Pehlivan, I., 2016. A new 3D chaotic system: dynamical analysis, elec-
                tronic circuit design, active control synchronization and chaotic masking communication
                application. Optik 127 (8), 4024 4030.
             Cushing, J.M., Henson, S.M., Blackburn, C.C., 2007. Multiple mixed attractors in a competition
                model. J. Biol. Dyn. 1, 347 362.
             Deng, W.H., Li, C.P., 2005. Chaos synchronization of the fractional Lu ¨ system. Physica A 353,
                61 72.
             Diethelm, K., 2010. The Analysis of Fractional Differential Equations, An Application Oriented
                Exposition Using Differential Operators of Caputo Type. Springer, Berlin.
             Diethelm, K., Ford, N.J., 2002. Analysis of fractional differential equations. J. Math. Anal. Appl.
                265, 229 248.
             Diethelm, K., Ford, N.J., Freed, A.D., 2004. Detailed error analysis for a fractional Adams
                method. Numer. Algorithms 36, 31 52.
             Elwakil, A., 2010. Fractional order circuits and systems: an emerging interdisciplinary research
                area. IEEE Circuits Syst. Mag. 10, 40 50.
             Esmaeili-Najafabadi, H., Ataei, M., Sabahi, M.F., 2017. Designing sequence with minimum PSL
                using Chebyshev distance and its application for chaotic MIMO radar waveform design.
                IEEE. Trans. Signal Process. 65 (3), 690 704.
             Fortuna, L., Frasca, M., 2007. Experimental synchronization of single transistor based chaotic
                circuits. Chaos 17, 043118 1 5.
             Freeborn, T.J., Maundy, B., Elwakil, A.S., 2013. Measurement of supercapacitor fractional order
                model parameters from voltage excited step response. IEEE J. Emerging Sel. Top. Circuits
                Syst. 3, 367 376.
             Ghoudelbourk, S., Dib, D., Omeiri, A., Azar, A.T., 2016. Mppt control in wind energy conver-
                sion systems and the application of fractional control (piα) in pitch wind turbine. Int. J.
                Model. Identif. Control 26 (2), 140 151.
   503   504   505   506   507   508   509   510   511   512   513