Page 503 - Mathematical Techniques of Fractional Order Systems
P. 503

490  Mathematical Techniques of Fractional Order Systems


            this section, the Caputo definition is utilized. The Caputo definition is
            described by

                                   ð t
                              1        f  ðmÞ  ðτÞ
                     q
                   0 D ftðÞ 5            q112m  dτ;  m 2 1 , q , m:  ð16:31Þ
                     t
                           Γðm 2 qÞ ðt2τÞ
                                   0
               In the Caputo definition (16.31), m is the first integer which is not less

            than qðm 5 q Þ and Γ is the Gamma function:
                                          ð N
                                               e dt:
                                    ΓðzÞ 5  t z21 2t                 ð16:32Þ
                                          0
               When considering the effect of fractional order derivative on the intro-
            duced system with infinite equilibria (16.10), we concentrate on its fractional
            order form given by:

                                8  q
                                  D x 52 z
                                >
                                <
                                   q     2
                                  D y 5 xz 1 asgnðzÞ                 ð16:33Þ
                                >
                                :  q        y     2   2
                                  D z 5 x 2 be 1 zðcy 2 z Þ
            where the three state variables are x, y, and z while q is the fractional order
            ð0 , q , 1Þ. It is noted that the three positive parameters are a, b, c
            ða; b; c . 0Þ. From (16.33), it is trivial to verify that fractional order system
            (16.33) has an infinite number of equilibrium points.
               For investigating fractional order system (16.33), we have applied
            Adams Bashforth Moulton algorithm (Diethelm and Ford, 2002; Diethelm
            et al., 2004). As a result, fractional order system (16.33) can be rewritten in
            the following form:

              8                    q                   q    n
                                  h                   h    X
              >                           p ðÞ
              > x h ðt n11 Þ 5 xð0Þ 1  ð2 z ðt n11 ÞÞ 1       α j;n11 ð2 zðt j ÞÞ
              >
              >
              >                Γðq 1 2Þ            Γðq 1 2Þ
              >                                            j50
              >
              >
                                  h
              >                    q
              >
                y h ðt n11 Þ 5 yð0Þ 1
              >                          p ðÞ   p ðÞ   2       ðpÞ
              >                        x ðt n11 Þðz ðt n11 ÞÞ 1 asgnðz ðt n11 ÞÞ
              >
                               Γðq 1 2Þ
              >
              >
              >
              >
              >
              >                q    n
              >               h    X
              >                                    2
              >          1
              >                      α j;n11 xðt j Þðzðt j ÞÞ 1 asgnðzðt j ÞÞ
              >
                             ð
              <            Γ q 1 2Þ
                                   j50
                                 h q
                                                   ðpÞ
              >                         ðpÞ        y ðt n11 Þ
              > z h ðt n11 Þ 5 zð0Þ 1  x ðt n11 Þ 2 be
              >
                               Γðq 1 2Þ
              >
              >
              >
              >
              >                q
                              h
              >
                         1
              >                                                3
              >                       ðpÞ    2 ðpÞ      ðpÞ
              >                    ðcðy ðt n11 ÞÞ z ðt n11 Þ 2 ðz ðt n11 ÞÞ Þ
              >
                           Γðq 1 2Þ
              >
              >
              >
              >
              >                     n
              >                q
              >               h    X
              >                                             2          3
              >          1           α j;n11 ðxðt j Þ 2 be yðt j Þ
              >                                      1 cðyðt j ÞÞ zðt j Þ 2 ðzðt j ÞÞ Þ
              >
              :            Γðq 1 2Þ
                                   j50
                                                                     ð16:34Þ
   498   499   500   501   502   503   504   505   506   507   508