Page 632 - Mathematical Techniques of Fractional Order Systems
P. 632

Enhanced Fractional Order Chapter | 20  603


                    l
             where v 5 L n  μ l  is the true value of the l th  implication and μ l  is
                        i51 F ðx i Þ                                  F ðx i Þ
                                                                       i
                             i
             the membership function value of the fuzzy variable x i (Lin et al., 2004;
             Hartley et al., 1995)
                Eq. (20.14) can be rewritten as:
                                              T
                                       yXðÞ 5 θ ξ XðÞ                 ð20:15Þ
                                              l
             where θ 5 θ θ ... θ T M     is an adjustable parameter vector and
                   T
                         T T

                   l
                         1 2
                                      M
                 T
                        1
                             2
                                        X
                ξ XðÞ 5 ½ξ XðÞ; ξ XðÞ; ... ; ξ ðފ is a fuzzy basis function vector defined
             as:
                                              l

                                             v 1X T
                                       l
                                      ξ XðÞ 5 P M  l
                                               l51  v
                                                                   th
                                                             l
                When the inputs are fed into the T S, the true value v of the l implica-
             tion is computed. Applying the common defuzzification strategy, the output
             expressed as Eq. (20.14) is pumped out.
                Based on the universal approximation theorem (Wang and Mendel, 1992;
             Wang, 1994; Castro, 1995), the above fuzzy logic system is capable of uni-
             formly approximating any well-defined nonlinear function over a compact
             set Uc to any degree of accuracy. Also, it is straightforward to show that a
             multioutput system can always be approximated by a group of single-output
             approximation systems.
             20.4 FUZZY ADAPTIVE ROBUST H N CONTROL: SLIDING
             MODE APPROACH (VSC)
             Consider a fractional order SISO nonlinear dynamic system of the form (Lin
             and Kuo, 2011, 2012; Khettab et al., 2017c):
                     8    ðq 1 Þ
                          x
                     >    1  5 x 2
                     >
                     >
                     >
                     >   ^
                     >
                     >
                     <
                          x ðq n21 Þ  5 x n                           ð20:16Þ
                           n21
                     >
                     >
                     >    ðq n Þ
                     >   x   5 fðX; tÞ 1 gðX; tÞu 1 dðtÞ
                     >    n
                     >
                     >
                     :
                         y 5 x 1
             where
                                T                         T  n
                X 5 x 1 ; x 2 ; ...; x n Š 5 x; x ; x ð2qÞ ; ...; x ððn21ÞqÞ  AR  is the system’s
                                       ðqÞ
                   ½
             state vector, uAR is the control input, and yAR is the output, with the initial
             conditions:
                uð0Þ 5 0 and yð0Þ 5 0.
                The initial conditions are set to zero to avoid unrobustness for Nussbaum
             type adaptive controller as proved by Georgiou and Smith (1997),
   627   628   629   630   631   632   633   634   635   636   637