Page 633 - Mathematical Techniques of Fractional Order Systems
P. 633

604  Mathematical Techniques of Fractional Order Systems


               If q 1 5 q 2 5 ? 5 q n 5 q the above system is called a commensurate order
            system. Then equivalent form of the above system is described as:

                                x ðnqÞ  5 fðX; tÞ 1 gðX; tÞu 1 dðtÞ
                                                                     ð20:17Þ
                                y 5 x 1
            where fðX; tÞ and gðX; tÞ are unknown but bounded nonlinear functions
            which express system dynamics and dðtÞis the external bounded disturbance.
            The control objective is to force the system output y to follow a given
            bounded reference signal y d , under the constraint that all signals involved
            must be bounded.
               The reference signal vector y and the tracking error vector e are defined as,
                                      d
                                                 T
                               h                i
                                    ðqÞ
                           y 5 y d ; y ; ...; y ððn21ÞqÞ  AR n
                            d       d      d
                                                         T  n        ð20:18Þ
                                          ðqÞ
                           e 5 y 2 y 5 e; e ; ...; e ððn21ÞqÞ  AR ;
                            d   d
                           e ðiqÞ  5 y ðiqÞ  2 y ðiqÞ
                                 d
                                  T  n
               Let k 5 k 1 ; k 2 ; ...; k n Š AR be chosen such that the stable condition
                      ½

             argðeigðAÞÞ . qπ=2 is met, where 0 , q , 1 and eigðAÞ represents the

            eigenvalues of the system state matrix given in Eq. (20.19).
               By substituting Eq. (20.18) into Eq. (20.17) we obtain the closed-loop
            control system in the state space domain as follows:
                                x ðnqÞ  5 Ax 1 BfðXÞ 1 gðXÞuŠ
                                            ½
                                                                     ð20:19Þ
                                    T
                                y 5 c x
            where
                2                                     3    2 3          2 3
                   0    1    0    0   ?      0     0         0           1
                   0    0    1    0   ?      0               0           0
                6                                  0 7     6 7          6 7
                6                                     7    6 7          6 7
            A5  6  ^    ^    ^    ^   &      ^     ^  7 ;B5 ^    and c5 ^
                                                           6 7
                                                                        6 7
                6                                     7    6 7          6 7
                   0    0    0    0   ?      0     1         0           0
                4                                     5    4 5          4 5
                 2k 1 2k 2 2k 3 2k 4 ?    2k ðn21Þ 2k n      1           0
               By using the relation y ðqÞ  5 Ay d 1 By ðnqÞ ; the following equation is
                                     d          d
            obtained:
                                        h                 i

                             e  ðqÞ  5 Ae 1 BfðXÞ 1 gðXÞu 2 y ðnqÞ
                                                       d
                                                                     ð20:20Þ
                                 T
                             e 5 c e
               In what follows, a fuzzy adaptive control will be designed to stabilize the
            system Eq. (20.16) or an equivalent system Eq. (20.19).
            i. If the functions fðX; tÞ and gðX; tÞare known and the system is free of
               external disturbance dðtÞ(i.e., dðtÞ 5 0),
               The following assumptions are considered (Liu and Wang, 2009;
            Boulkroune and M’saad, 2012),
   628   629   630   631   632   633   634   635   636   637   638