Page 637 - Mathematical Techniques of Fractional Order Systems
P. 637

608  Mathematical Techniques of Fractional Order Systems



                                   θ  ðqÞ  52 r 1 ξðXÞB Pe
                                                 T
                                    f                                ð20:37Þ
                                                T
                                   θ ðqÞ  52 r 2 ξðXÞB Peu
                                    g                                ð20:38Þ
                                             T
            where r . 0; r i . 0; i 5 1B2, and P 5 P . 0 is the solution of the following
            Riccati-like equation.

                                              2   1   T
                                  T
                            PA 1 A P 1 Q 2 PB  2     B P 5 0         ð20:39Þ
                                              r   ρ 2
                       T
            where Q 5 Q . 0 is a prescribed weighting matrix. Therefore, the H N
            tracking performance can be achieved for a prescribed attenuation level ρ
                           2
            which satisfies 2ρ $ r and all the variables of the closed-loop system are
            bounded.
               In order to analyze the closed-loop stability, the fractional Lyapunov
            function candidate (Aguila-Camacho et al., 2014; Duarte-Mermoud et al.,
            2015) is chosen as
                        1            1     T       1     T
                          T
                    V 5  e tðÞPetðÞ 1   θ ~  f  θ ~ f  1  θ ~  g  ~ θ g  ð20:40Þ
                        2           2r 1          2r 2
               Taking the derivative of (20.40) with respect to time, we get
                               T   1  T         1    ~  T     ~  ðqÞ     1    ~ T     ~  ðqÞ
                      1
              V ðÞ 5    e ðÞ ðÞ 1    e tðÞPetðÞ 1  θ  f  θ  f  1  θ  g  θ  g
                            t
                q ðÞ
                  t
                          q ðÞ
                               t
                      2            2           r 1            r 2
                                                                     ð20:41Þ
                       1  n    h   T ~     T ~         io T
                     5    Ae1B ξ XðÞ θ 1ξ XðÞ θ u1u a 1w 1  Pe
                       2             f        g
                       1                  T ~      T ~
                         T
                     1  e eðÞPAe 1 B  ξ XðÞ θ 1 ξ XðÞ θ u 1 u a
                                            f
                                                     g
                       2                       1w 1
                       1     T      q ðÞ     1     T      q ðÞ
                     1    θ ~  θ ~  1   θ ~  θ ~
                       r 1  f   f    r 2  g   g
                       1
                                                 T
                                        T
                            T
                         T
                     5  e A P 1 PA e 1 e PBu a 1 e PBw 1             ð20:42Þ
                       2
                       8                      39
                          2
                       <  T            1       =
                                 T
                     1  θ ~ 4 ξ XðÞB Pe 1  θ ~  ðqÞ  5
                         f                 f
                                       r 1
                       :                       ;
                       8  2                    39
                       <  T             1     ðqÞ   =
                             ðÞB Peu 1
                     1  θ ~ 4 ξ X  T       θ ~  5
                         g                  g
                       :                r 2     ;
   632   633   634   635   636   637   638   639   640   641   642