Page 635 - Mathematical Techniques of Fractional Order Systems
P. 635

606  Mathematical Techniques of Fractional Order Systems


                               e ðnqÞ  1 k n e ðn21Þq  1 ... 1 k 1 e 5 0  ð20:27Þ
            which is the main objective of control lim t-N eðtÞ 5 0.
               In the reaching phase we get sðX; tÞ 6¼ 0, and a switching-type control u sw
            must   be   added   in  order  satisfy  the  sufficient  condition

            sðX; tÞ_ sðX; tÞ #2 η sðX; tÞ ;  η . 0 which implies the global control.


               Therefore the global sliding mode control law is given by:
                       1     X n21
                 u 5              k i e ðiqÞ  2 fðX; tÞ 1 y ðnqÞ  2 u a 2 KsgnðsÞ  ð20:28Þ

                                                 d
                     gðX; tÞ   i51
               We can show by taking a Lyapunov function candidate defined as
                                           1
                                             2
                                       V 5   s ðeÞ                   ð20:29Þ
                                           2
               And differentiating Eq. (20.29) with respect to time to the fractional order
                ðqÞ
            q, V ðtÞ along the system trajectory (Aguila-Camacho et al., 2014), we obtain
                                               !
                                   n21
                                   X
                   V  ðqÞ  5 ss ðqÞ  5 s  k i e ðiqÞ  1 e ðnqÞ
                                   i51
                                                  !
                               n21
                               X
                         52 s     k i e ðiqÞ  2 y ðnqÞ  1 y ðnqÞ
                                         d
                               i51                                   ð20:30Þ
                                                             !
                               n21
                               X
                         52 s     k i e ðiqÞ  1 fðX; tÞ 1 gðX; tÞu eq 2 y ðnqÞ
                                                          d
                               i51

                         #2 η sðX; tÞ


               Hence, the sliding mode control u guarantees the sliding condition of
            sðX; tÞ_ sðX; tÞ.
               However, the functions fðX; tÞ and gðX; tÞ are usually unknown in practice
            and it is difficult to apply the control law Eq. (20.28) for an unknown nonlin-
            ear plant. Moreover, the chattering problem appears when adding the switch-
            ing control term u sw 5 K sgnðsÞ:
               To deal with these problems, we consider the adaptive sliding mode con-
            trol scheme using a fuzzy logic system and the saturation function to avoid
            chattering problem.
               The Chattering phenomenon can be reduced by replacing the function
            sign by a function of adequate saturation which filters the high frequencies.
               The modified resulting control law uðtÞ, which includes a fuzzy system to
            approximate the unknown functions fðX; tÞ and gðX; tÞ and a saturation func-
            tion that attenuates the chattering and improves performance, is as follows:

                       1   h                   T               i
                 u 5         2 f X θ      f  1 y ð d nqÞ  1 k e 2 u a 2 satðsðX; tÞÞ  ð20:31Þ
                     gðXjθ Þ
                          g
   630   631   632   633   634   635   636   637   638   639   640