Page 634 - Mathematical Techniques of Fractional Order Systems
P. 634

Enhanced Fractional Order Chapter | 20  605


                Assumption IV.1. The control gain gðX; tÞ is not zero and of known sign.
                It is also strictly positive or strictly negative.

                Assumption IV.2. The external disturbance is bounded: dðtÞ # D with D


                an unknown positive constant.
                Then the control law of the certainty equivalent controller is obtained as:
                                    1   h                 i
                                                        T
                              u 5        2fðX; tÞ 1 y ðnqÞ  1 k e     ð20:21Þ

                                                   d
                                  gðX; tÞ
                       h                i T
                           ðqÞ
             where y 5 y d ; y ; ...; y ððn21ÞqÞ  AR n
                   d       d       d
                                                          T
                                                            n
                           e 5 y 2 y 5 e; e ; .. .; e ððn21ÞqÞ  AR ;
                                           ðqÞ
                            d
                                d
                e ðiqÞ  5 y ðiqÞ  2 y ðiqÞ  is the tracking error vector.
                      d
                Substituting Eq. (20.21) into Eq. (20.20), we have
                                e ðnqÞ  5 k n e ðn21Þq  1 ? 1 k 1 e 5 0  ð20:22Þ
             which is the main objective of control, lim t-N eðtÞ 5 0:
                The sliding surface is defined as:
                          sðX; tÞ  52 ðKeÞ
                                 52 ðk 1 e 1 k 2 e ðqÞ  1 ... 1 k n21 e ððn22ÞqÞ  ð20:23Þ
                                 1 e ððn21ÞqÞ Þ
             when eð0Þ 5 0, the tracking problem x 5 y d implies that the sliding surface
             sðeÞ 5 0; ’t $ 0.
                This later classic derivative can be decomposed into a fractional type,
                                              q
                                _ sðX; tÞ 5 D ð12qÞ ðD ðsðX; tÞÞÞ 5 0
                                                                      ð20:24Þ
                                           q
                                    then  D ðsðX; tÞÞ 5 0
                If the functions fðX; tÞ and gðX; tÞ are known and the system is free of
             external disturbance, i.e., dðtÞ 5 0: The control signal in the following equa-
             tion drives the dynamic to reach to the sliding surface:
                                    n21         !
                                   X
                         s ðqÞ  52    k i e ðiqÞ  1 e ðnqÞ
                                    i51
                                  n21                                 ð20:25Þ
                                  X
                              52     k i e ðiqÞ              ðnqÞ
                                                             d
                                         1 fðX; tÞ 1 gðX; tÞu eq 2 y
                                  i51
                              5 0
                Therefore, the equivalent control law is given by:
                                  1    X n21
                          u eq 5            k i e ðiqÞ  2 fðX; tÞ 1 y ðnqÞ  ð20:26Þ
                                                           d
                               gðX; tÞ   i51
                Substituting Eq. (20.26) into Eq. (20.19), we have
   629   630   631   632   633   634   635   636   637   638   639