Page 358 - Matrix Analysis & Applied Linear Algebra
P. 358

354              Chapter 5                    Norms, Inner Products, and Orthogonality

                                                                                       2
                                                                            2
                                                                                  2
                                                                  2
                                    5.6.9) to produce the conclusion b + b 2  = a +2a + a . Now use the fact
                                                                  ii   jj   ii    ij   jj
                                    that b kk = a kk for all k  = i, j together with  B  =  A   to write
                                                                                F      F
                                            2      2       2       2        2      2  2
                                        B   =  B  −       b  =  B  −       b  − b + b
                                           F       F       kk      F        kk    ii  jj
                                                        k              k
=i,j
                                                   2        2      2    2    2        2       2     2
                                             =  A  −       a  − a +2a + a       =  A  −      a  − 2a
                                                   F        kk    ii    ij   jj       F       kk    ij
                                                       k
=i,j                              k
                                                    2    2
                                             =  A   − 2a .
                                                    F    ij
                                    Furthermore, since a 2 pq  ≤ a 2 ij  for all p  = q,
                                                                                                 2


                                               2      2        2     2     2          2      A   F
                                           A   =     a   ≤    a =(n − n)a      =⇒−a ≤−            ,
                                              F       pq       ij          ij         ij    n − n
                                                                                              2
                                                  p=q      p=q


                                    so
                                                                           2
                                            2       2    2        2     A   F          2         2
                                        B   =  A   − 2a ≤ A   − 2            =   1 −         A   .
                                           F       F     ij       F    n − n        n − n       F
                                                                        2
                                                                                      2
                                    Jacobi’s Diagonalization Algorithm. Start with A 0 = A, and produce a
                                                              T
                                    sequence of matrices A k = P A k−1 P k , where at the k th  step P k is a plane
                                                              k
                                    rotation constructed to annihilate the maximal off-diagonal entry in A k−1 . In
                                    particular, if a ij is the entry of maximal magnitude in A k−1 , then P k is the
                                    rotator in the (i, j)-plane defined by setting
                                             1                   σ                           (a ii − a jj )
                                                                              2
                                      s = √         and   c = √       =   1 − s ,  where  σ =         .
                                            1+ σ 2             1+ σ 2                           2a ij
                                    For n> 2we have
                                                                     k
                                                    2           2          2

                                                 A   ≤    1 −          A   → 0as      k →∞.
                                                  k F          2           F
                                                             n − n
                                    Therefore, if P (k)  is the orthogonal matrix defined by P (k)  = P 1 P 2 ··· P k , then
                                                                T    (k)
                                                              (k)
                                                        lim P    AP    = lim A k = D
                                                        k→∞              k→∞
                                    is a diagonal matrix.
                   Exercises for section 5.7
                                    5.7.1.  (a) Using Householder reduction, compute the QR factors of
                                                                                    
                                                                          1  19  −34
                                                                  A =    −2  −5   20    .
                                                                          2   8    37
                                            (b) Repeat part (a) using Givens reduction.
   353   354   355   356   357   358   359   360   361   362   363