Page 462 - Matrix Analysis & Applied Linear Algebra
P. 462

458              Chapter 5                    Norms, Inner Products, and Orthogonality

                                   5.15.8. Prove that if f : V→   is a function defined on a space V such that
                                           f(αx)= αf(x) for scalars α ≥ 0, then

                                                                max f(x)= max f(x).
                                                                x =1        x ≤1


                                                                                               n
                                   5.15.9. Let M and N be nonzero complementary subspaces of   .

                                                                                    †
                                              (a) Explain why P MN = (I − P N )P M , where P M and P N
                                                  are the orthogonal projectors onto M and N, respectively,
                                                  and P MN is the oblique projector onto M along N.
                                              (b) If θ min is the minimal angle between M and N, explain why

                                                              
              
 −1  
              
 −1

                                                              
             †
     
             †
                                                     sin θ min = 
 (I − P N )P M 
  = 
 P M (I − P N )
                                                                              2                    2
                                                              
              
 −1  
              
 −1

                                                              
             †
     
             †
                                                            = 
 (I − P M )P N 
  = 
 P N (I − P M ) 
  .
                                                                              2                    2
                                                                                 n
                                  5.15.10. For complementary subspaces M, N⊂   , let θ min be the minimal
                                                                           ¯
                                           angle between M and N, and let θ min denote the minimal angle be-
                                                           ⊥
                                           tween M and N .
                                              (a) If P MN is the oblique projector onto M along N, prove that

                                                                        ¯

                                                                    cos θ min = 
P †  
 .

                                                                                MN
                                                                                     2
                                                                          ¯
                                              (b) Explain why sin θ min ≤ cos θ min .

                                                                                 be the orthogonal matrices
                                  5.15.11. Let U = U 1 | U 2  and V = V 1 | V 2
                                           defined on p. 451.
                                                                T
                                              (a) Prove that if U V 2 is nonsingular, then
                                                                2
                                                                     1            
  T   
 2

                                                                          
 =1 − U V 1   
  .
                                                               
   T       2         2    2
                                                               
 (U V 2 ) −1
                                                                   2       2
                                                                T
                                              (b) Prove that if U V 1 is nonsingular, then
                                                                2
                                                               
  T   
 2           1
                                                               
      
                  
 .
                                                                 U V 2  2  =1 − 
         2
                                                                  2
                                                                                  T
                                                                              
 (U V 1 ) −1
                                                                                  2       2
   457   458   459   460   461   462   463   464   465   466   467