Page 106 - Singiresu S. Rao-Mechanical Vibrations in SI Units, Global Edition-Pearson (2017)
P. 106

1.11  harmoniC analysis   103
                                    x(t) can be expressed as
                                                                     t
                                                             x1t2 = A ;    0 … t … t                    (E.3)
                                                                    t
                                    Equation (E.3) is shown in Fig.  1.54(a). To compute the Fourier coefficients  a n  and  b n , we use
                                    Eqs. (1.71)–(1.73):

                                                        2p>v          2p>v           2 2p>v
                                                    v             v       t     v A t
                                                  a 0 =    x1t2 dt =     A  dt =    ¢ ≤    = A          (E.4)
                                                    p  L 0        p  L 0  t     p t 2  0
                                                        2p>v                2p>v
                                                    v               #    v       t      #
                                                  a n =    x1t2 cos nvt dt =    A  cos nvt dt
                                                    p  L 0               p  L 0  t
                                                         2p>v                                2p>v
                                                    Av             #    A   cos nvt  vt sin nvt
                                                   =        t cos nvt dt =  J     +         R
                                                    pt  L 0             2p 2  n 2      n     0
                                                   = 0,    n = 1, 2,  c                                 (E.5)

                                                        2p>v                2p>v
                                                    v               #    v       t     #
                                                  b n =    x1t2 sin nvt dt =   A  sin nvt dt
                                                    p  L 0               p  L 0  t
                                                         2p>v                                2p>v
                                                    Av            #     A   sin nvt  vt cos nvt
                                                   =        t sin nvt dt =   J    -         R
                                                    pt  L 0            2p 2   n 2      n     0
                                                      A
                                                   = -    ,    n = 1, 2,  c                             (E.6)
                                                      np
                                    Therefore the Fourier series expansion of x(t) is
                                                       A   A        A
                                                 x1t2  =  -   sin vt -   sin 2 vt - c
                                                       2   p        2p

                                                       A p            1        1
                                                      =  J  - bsin vt +   sin 2vt +   sin 3vt + c r R   (E.7)
                                                       p 2            2        3
                                    The first three terms of the series are shown plotted in Fig. 1.54(b). It can be seen that the approxima-
                                    tion reaches the sawtooth shape even with a small number of terms.

                                                                                                           ■



                                    numerical Fourier analysis
                 example 1.20
                                    The pressure fluctuations of water in a pipe, measured at 0.01-second intervals, are given in Table 1.1.
                                    These fluctuations are repetitive in nature. Make a harmonic analysis of the pressure fluctuations and
                                    determine the first three harmonics of the Fourier series expansion.
   101   102   103   104   105   106   107   108   109   110   111