Page 126 - Mechanics Analysis Composite Materials
P. 126

Chapter 3.  Mechanics of a unidireclional ply    Ill

           and derive the following equations for o(x)and t(x)

                     Em
                                               1
               ~(x)= -V[sin & (x- c) - sin A,J] + -z’(x)a ,                 (3.1 18)
                     a                         2
               a2         2
              -t”(x)   - -z(x) = -VI.,,( 1 +d)[cosA,(x  - c) + cos AIJX] .   (3.119)
               6Em       Gm
           We need a periodic solution of Eq. (3.119) and find it in the following form

               z(.)   = C[COS n,(x  - c) +cos A,,x]  .                      (3.120)

           Substituting into Eq. (3.119) and taking into account that I, = n/l, we get


                                                                            (3.121)


           Now, using Eqs. (3.119, (3.1 I8), and (3.120) we can write the final expressions for
           the stresses acting in the matrix

               ZX.”  = C[COSi,(x  - c) + cos A&],


                                                                            (3.122)





           where  C  is  specified with  Eqs. (3.121).  The corresponding  strain  energies of  the
           typical element in Fig. 3.61 are







           Substituting Eqs. (3.122) and integrating we arrive at

                    adl,
               ws =-CC’(l   +COSI,C),
                    2Gm





           In conjunction with these results, Eqs.(3.109), (3.11 lb(3.113)  and (3.121) allow us
           to determine GIwhich acquires the following final form
   121   122   123   124   125   126   127   128   129   130   131