Page 142 - Mechanics Analysis Composite Materials
P. 142

Chapter 4.  Mechanics of a composite layer      127


                                1
                             +
                                        1
                                                1
                u,= c0 +c~~I~-clzif +-cI31; +-cI4if + ...
                               2       3!      4!
                             1       1        I
                     + C2li2 + -c2&  +--??I;  + -c,4i;  + ...
                             2       3!  -.   4!
                                  1
                       1
                                             1
                     +-CI~ZIZII~+-c1221iji23  +-~112211122
                       2         3!         3!
                       1          1           1
                     +-cI3,1.l:i2   +-c12,21:i;   +-c1123i1i;3  + ... ,        (4.11)
                       4!         4!         4!
            where



            Constitutive equations follow from Eq. (4.10) and can be written in  the form
                    au, ai,  au, aiz
                E..                                                           (4.12)
                 ‘I - ail aoij  ai,  aoii  .
            Assuming that for zero stresses U, = 0 and cij = 0 we should take co = 0 and CII  = 0
            in Eq. (4.11).
              Consider a plane stressed state with stresses o.~,o,,,z.~!  shown in  Fig. 4.5.Stress
            invariants in Eqs. (2.13) entering Eq. (4.12) are




            Linear elastic material model is described with Eq. (4.1 1)  if we take
                u, =fC12i;  + C2II2  .                                        (4.14)

            Using  Eqs. (4.12)-(4.14)   and  engineering  notations  for  stresses  and  strains,  we
            arrive at

                8.r = c12(o.v +ox) - C,Iql.,   4;= c12(o., + oy)- c2lo.r’  y.vj. = 2C21Z,,.
            These equations coincide with the corresponding equations in  Eqs. (4.6) if we take

                     1         I  +V
                c12  = -  c,1  = -
                     E’         E   ’
            To describe nonlinear stress-strain  diagram  of the type shown in  Fig. 4.6,wc  can
            generalize Eq. (4.14) as


                u.- -c12i; + C2lZ2 + -C14Z14 + -c22z,  2  .
                                           1
                                   1
                     1
                 ‘-2               4!      2
   137   138   139   140   141   142   143   144   145   146   147