Page 207 - Mechanics Analysis Composite Materials
P. 207

192                Mechanics and analysis of composite materials

              Repeating the derivation described in Section 2.5 we have







              where





                                                                               (4.138)






              Using Eq. (4.137)  we arrive at

                                                                               (4.139)

              where cos a = &Ids,  and sin a = dy/ds,.
                In a similar way, we can find the angle a’  after the deformation, i.e.,

                   .     dv’
                  slna  =-=-
                      I
                         ds,   1  +E,
                                                                               (4.140)
                  cosa  = -=-
                         dxr
                      I
                         ds,   1 + E,
              Now return to the ply element in Fig. 4.60.  Taking a = 4 in Eqs. (4.139) and (4.140)
              we obtain


                                                ax
                  sin$!=-[(1 +El1   1 +-2)sin++%cos4],                         (4.141)
                                                aY  1
                            1
                  cos4) = -[(1 +%)cos4 +-sin4            .
                          1 +E1
              Putting a = n/2 + 4 we have


                  sin(#  + $)  =-[(1  +2)cos 4 -%sin  41
                              1  +E2                                           (4.142)
                  cos(4’ + +) = -[-(I    +z)cos4+aysing  1  .
                               1 +E2
   202   203   204   205   206   207   208   209   210   211   212