Page 208 - Mechanics Analysis Composite Materials
P. 208

Chapter 4.  Mechanics  of a composite layer    193

            Using  the  last  equation  of  Eqs. (4.134)  we  can  find  the  shear  strain  as
            sinylz= cos$.  After  some  rearrangements  with  the  aid  of  Eqs. (4.141)  and
            (4.142) we arrive at




                                                                             (4.143)
            For 4 = 0, axes 1 and 2 coincide, respectively, with axes x and y (see Fig. 4.60), and
            Eq. (4.143) yields

                                                                             (4.144)

            Using this  result  to express E,,,  we can write Eqs. (4.141H4.143)  in  the following
            final form:

               (1 +E\)?  = (1 +E,)~COS~~+(I  sin^++(^ +&,)(I  +q.)sinyr,.sin2+.
               (I +E~Y= (1 +~,)~sin’4+(1+E,,)~COS~+- (I         +~,.)sin?/,,.sin26:
                              1
                sin-y12=
                       (1 + El)(1  + ez)
                       x ([(~+c,.)~-(l+E.r)2~sin4cos#+ (1 +€,)(I  +E,.)sing,,cos24}  .
                                                                             (4.145)

            As  follows  from  Fig. 4.60  and  the  last  equation  of  Eqs. (4.134),  dsl =
            ds;  sin $ = ds; cosyl2.So in accordance with Eqs. (4.134) and (4.135)
               I  +e;  = (I  +Ez)COSy,2  .

            Using Eqs. (4.145) to transform this equation we get


                                                                             (4.146)

            To express Q,’ in terms of Q, and strains referred to the global coordinate frame x, y,
            consider  Eq. (4.136).  After  rather  cumbersome  transformation  with  the  aid  of
            Eqs. (4.141) and (4.142) we  obtain
   203   204   205   206   207   208   209   210   211   212   213